高级检索+

植物泛基因组研究进展与展望

郝晨路, 於晓芬, 曲明昊, 赖恩惠, 郭素敏, 高磊

郝晨路, 於晓芬, 曲明昊, 赖恩惠, 郭素敏, 高磊. 植物泛基因组研究进展与展望[J]. 植物科学学报, 2022, 40(1): 124-132. DOI: 10.11913/PSJ.2095-0837.2022.10124
引用本文: 郝晨路, 於晓芬, 曲明昊, 赖恩惠, 郭素敏, 高磊. 植物泛基因组研究进展与展望[J]. 植物科学学报, 2022, 40(1): 124-132. DOI: 10.11913/PSJ.2095-0837.2022.10124
Hao Chen-Lu, Yu Xiao-Fen, Qu Ming-Hao, Lai En-Hui, Guo Su-Min, Gao Lei. Current status and prospects of pan-genome studies in plants[J]. Plant Science Journal, 2022, 40(1): 124-132. DOI: 10.11913/PSJ.2095-0837.2022.10124
Citation: Hao Chen-Lu, Yu Xiao-Fen, Qu Ming-Hao, Lai En-Hui, Guo Su-Min, Gao Lei. Current status and prospects of pan-genome studies in plants[J]. Plant Science Journal, 2022, 40(1): 124-132. DOI: 10.11913/PSJ.2095-0837.2022.10124
郝晨路, 於晓芬, 曲明昊, 赖恩惠, 郭素敏, 高磊. 植物泛基因组研究进展与展望[J]. 植物科学学报, 2022, 40(1): 124-132. CSTR: 32231.14.PSJ.2095-0837.2022.10124
引用本文: 郝晨路, 於晓芬, 曲明昊, 赖恩惠, 郭素敏, 高磊. 植物泛基因组研究进展与展望[J]. 植物科学学报, 2022, 40(1): 124-132. CSTR: 32231.14.PSJ.2095-0837.2022.10124
Hao Chen-Lu, Yu Xiao-Fen, Qu Ming-Hao, Lai En-Hui, Guo Su-Min, Gao Lei. Current status and prospects of pan-genome studies in plants[J]. Plant Science Journal, 2022, 40(1): 124-132. CSTR: 32231.14.PSJ.2095-0837.2022.10124
Citation: Hao Chen-Lu, Yu Xiao-Fen, Qu Ming-Hao, Lai En-Hui, Guo Su-Min, Gao Lei. Current status and prospects of pan-genome studies in plants[J]. Plant Science Journal, 2022, 40(1): 124-132. CSTR: 32231.14.PSJ.2095-0837.2022.10124

植物泛基因组研究进展与展望

基金项目: 

国家自然科学基金项目(32170395);中国科学院植物种质创新与特色农业重点实验室开放课题。

详细信息
    作者简介:

    郝晨路(1997-),女,硕士研究生,研究方向为植物基因组学(E-mail:haochenlu19@mails.ucas.ac.cn)。

    通讯作者:

    高磊,leigao@wbgcas.cn

  • 中图分类号: Q943.2

Current status and prospects of pan-genome studies in plants

Funds: 

This work was supported by grants from the National Natural Science Foundation of China(32170395) and Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences.

  • 摘要: 随着测序技术和生物信息学的快速发展,已有数百种植物的参考基因组被测序,极大地促进了植物功能基因组学、进化遗传学和分子育种学等领域的蓬勃发展。然而,随着研究的深入,越来越多的证据表明来自单一个体的参考基因组远不能代表整个物种的遗传多样性,由此催生了泛基因组(Pan-genome)的概念,并已成功应用于20余种植物的研究,揭示了丰富的遗传变异,发掘了大量的新基因,深化了对相关物种遗传多样性的认识。本文简述了泛基因组的概念、构建方法以及在当前植物研究中的应用现状,最后对其未来发展进行了展望。
    Abstract: With the rapid development of sequencing technology and bioinformatics, hundreds of plant reference genomes have been sequenced, which has greatly promoted the development of plant functional genomics, evolutionary genetics, and molecular breeding. However, increasing evidence suggests that one reference from a single individual is insufficient to comprehensively understand the genetic diversity of a given species. The pan-genome concept has been proposed and successfully employed in studies of more than 20 plant species, uncovering abundant novel genes and genetic variations and deepening our understanding of genetic diversity. Here, we briefly introduce the concept and construction of pan-genomes, as well as their applications, development, and prospects in plant research.
  • [1]

    Yang X, Lee WP, Ye K, Lee C. One reference genome is not enough[J]. Genome Biol, 2019, 20(1):104.

    [2]

    Olsen KM, Wendel JF. A bountiful harvest:genomic insights into crop domestication phenotypes[J]. Annu Rev Plant Biol, 2013, 64(1):47-70.

    [3]

    Meyer RS, Purugganan MD. Evolution of crop species:genetics of domestication and diversification[J]. Nat Rev Genet, 2013, 14(12):840-852.

    [4]

    Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:implications for the microbial "pan-genome"[J]. Proc Natl Acad Sci USA, 2005, 102(39):13950-13955.

    [5]

    Morgante M, De Paoli E, Radovic S. Transposable elements and the plant pan-genomes[J]. Curr Opin Plant Biol, 2007, 10(2):149-155.

    [6]

    Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, et al. Insights into the maize pan-genome and pan-transcriptome[J]. Plant Cell, 2014, 26(1):121-135.

    [7]

    Li YH, Zhou G, Ma J, Jiang W, Jin LG, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits[J]. Nat Biotechnol, 2014, 32(10):1045-1052.

    [8]

    Schatz MC, Maron LG, Stein JC, Hernandez Wences A, Gurtowski J, et al. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica[J]. Genome Biol, 2014, 15(11):506.

    [9]

    Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference[J]. Nat Plants, 2020, 6(8):914-920.

    [10]

    Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature, 2018, 557(7703):43-49.

    [11]

    Gao L, Gonda I, Sun H, Ma Q, Bao K, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor[J]. Nat Genet, 2019, 51(6):1044-1051.

    [12]

    Hubner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, et al. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance[J]. Nat Plants, 2019, 5(1):54-62.

    [13]

    Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication[J]. Nat Genet, 2020, 52(12):1423-1432.

    [14]

    Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, et al. Multiple wheat genomes reveal global variation in modern breeding[J]. Nature, 2020, 588(7837):277-283.

    [15]

    Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, et al. The barley pan-genome reveals the hidden legacy of mutation breeding[J]. Nature, 2020, 588(7837):284-289.

    [16] 赵永兵. 泛基因组学分析方法开发及应用[D]. 北京:中国科学院北京基因组研究所, 2014.
    [17]

    Torkamaneh D, Lemay MA, Belzile F. The pan-genome of the cultivated soybean (panSoy) reveals an extraordinarily conserved gene content[J]. Plant Biotechnol J, 2021, 19(9):1852-1862.

    [18]

    Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, et al. The pangenome of an agronomically important crop plant Brassica oleracea[J]. Nat Commun, 2016, 7(1):13390.

    [19]

    Tettelin H, Medini D. The Pangenome:Diversity, Dyna-mics and Evolution of Genomes[M]. Cham:Springer, 2020:1-307.

    [20]

    Lei L, Goltsman E, Goodstein D, Wu GA, Rokhsar DS, et al. Plant pan-genomics comes of age[J]. Annu Rev Plant Biol, 2021, 72(1):411-435.

    [21]

    Zhao Q, Feng Q, Lu H, Li Y, Wang A, et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice[J]. Nat Genet, 2018, 50(2):278-284.

    [22]

    Gordon SP, Contreras-Moreira B, Woods DP, Des Marais DL, Burgess D, et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure[J]. Nat Commun, 2017, 8(1):2184.

    [23]

    Hurgobin B, Golicz AA, Bayer PE, Chan CK, Tirnaz S, et al. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus[J]. Plant Biotechnol J, 2018, 16(7):1265-1274.

    [24]

    Zhao J, Bayer PE, Ruperao P, Saxena RK, Khan AW, et al. Trait associations in the pangenome of pigeon pea (Cajanus cajan)[J]. Plant Biotechnol J, 2020, 18(9):1946-1954.

    [25]

    Li J, Yuan D, Wang P, Wang Q, Sun M, et al. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection[J]. Genome Biol, 2021, 22(1):119.

    [26]

    Liu Y, Du H, Li P, Shen Y, Peng H, et al. Pan-genome of wild and cultivated soybeans[J]. Cell, 2020, 182(1):162-176.

    [27]

    Qin P, Lu H, Du H, Wang H, Chen W, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations[J]. Cell, 2021, 184(1):1-17.

    [28]

    Tao Y, Luo H, Xu J, Cruickshank A, Zhao X, et al. Extensive variation within the pan-genome of cultivated and wild sorghum[J]. Nat Plants, 2021, 7(1):766-773.

    [29]

    Yao W, Li G, Zhao H, Wang G, Lian X, et al. Exploring the rice dispensable genome using a metagenome-like assembly strategy[J]. Genome Biol, 2015, 16(1):187.

    [30]

    Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, et al. The pangenome of hexaploid bread wheat[J]. Plant J, 2017, 90(5):1007-1013.

    [31]

    Zhou P, Silverstein KA, Ramaraj T, Guhlin J, Denny R, et al. Exploring structural variation and gene family architecture with de novo assemblies of 15Medicago genomes[J]. BMC Genomics, 2017, 18(1):261.

    [32]

    Ou L, Li D, Lv J, Chen W, Zhang Z, et al. Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses[J]. New Phytologist, 2018, 220(2):360-363.

    [33]

    Yu J, Golicz AA, Lu K, Dossa K, Zhang Y, et al. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars[J]. Plant Biotechnol J, 2019, 17(5):881-892.

    [34]

    Zhang B, Zhu W, Diao S, Wu X, Lu J, et al. The poplar pangenome provides insights into the evolutionary history of the genus[J]. Commun Biol, 2019, 2(1):215.

    [35]

    Song JM, Guan Z, Hu J, Guo C, Yang Z, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus[J]. Nat Plants, 2020, 6(1):34-45.

    [36]

    Alonge M, Wang X, Benoit M, Soyk S, Pereira L, et al. Major impacts of widespread structural variation on gene expression and crop improvement in tomato[J]. Cell, 2020, 182(1):145-161.

    [37]

    Jiao WB, Schneeberger K. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics[J]. Nat Commun, 2020, 11(1):989.

    [38]

    Mamidi S, Healey A, Huang P, Grimwood J, Jenkins J, et al. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci[J]. Nat Biotechnol, 2020, 38(10):1203-1210.

    [39]

    Song JM, Liu DX, Xie WZ, Yang Z, Guo L, et al. BnPIR:Brassica napus pan-genome information resource for 1689 accessions[J]. Plant Biotechnol J, 2021, 19(3):412-414.

    [40]

    Cai X, Chang L, Zhang T, Chen H, Zhang L, et al. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa[J]. Genome Biol, 2021, 22(1):166.

    [41]

    Barchi L, Rabanus-Wallace MT, Prohens J, Toppino L, Padmarasu S, et al. Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding[J]. Plant J, 2021, 107(2):579-596.

    [42]

    Ruperao P, Thirunavukkarasu N, Gandham P, Selvanayagam S, Govindaraj M, et al. Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain[J]. Front Plant Sci, 2021, 12(1):666342.

    [43]

    Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes[J]. Science, 2021, 373(6555):655-662.

    [44]

    Hufnagel B, Soriano A, Taylor J, Divol F, Kroc M, et al. Pangenome of white lupin provides insights into the diversity of the species[J]. Plant Biotechnol J, 2021, 19(12):2532-2543.

    [45]

    Zhang X, Liu T, Wang J, Wang P, Qiu Y, et al. Pan-genome of Raphanus highlights genetic variation and introgression among domesticated, wild, and weedy radishes[J]. Mol Plant, 2021, 14(12):2032-2055.

    [46]

    Bayer PE, Scheben A, Golicz AA, Yuan Y, Faure S, et al. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different me-chanisms between polyploids and diploids[J]. Plant Biotechnol J, 2021, 19(12):2488-2500.

    [47]

    Weng J, Gu S, Wan X, Gao H, Guo T, et al. Isolation and initial characterization of GW5, a major QTL associa-ted with rice grain width and weight[J]. Cell Res, 2008, 18(12):1199-1209.

    [48]

    Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature, 2006, 442(7103):705-708.

    [49]

    Laland K, Uller T, Feldman M, Sterelny K, Müller GB, et al. Does evolutionary theory need a rethink?[J]. Nature, 2014, 514(7521):161-164.

    [50] 石开明, 彭昌操, 彭振坤, 罗正荣. DNA序列在植物系统进化研究中的应用[J]. 湖北民族学院学报(自然科学版), 2002, 20(4):5-10.
    [51] 丁士友, 张春林, 顾红雅, 陈章良. DNA水平上的植物系统学研究进展[J]. 西北植物学报, 1996, 4:446-456.

    Ding SY, Zhang CL, Gu HY, Chen ZL. Progresses of the studies on plant systematics at DNA level[J]. Acta Botanica Boreali-Occidentalia Sinica, 1996, 4:446-456.

    [52]

    Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, et al. Super-pangenome by integrating the wild side of a species for accelerated crop improvement[J]. Trends Plant Sci, 2020, 25(2):148-158.

    [53]

    Tao Y, Jordan DR, Mace ES. A graph-based pan-genome guides biological discovery[J]. Mol Plant, 2020, 13(9):1247-1249.

    [54]

    Tao Y, Jordan DR, Mace ES. Crop genomics goes beyond a single reference genome[J]. Trends Plant Sci, 2019, 24(12):1072-1074.

计量
  • 文章访问数:  1243
  • HTML全文浏览量:  94
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-14
  • 修回日期:  2021-08-26
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-02-27

目录

    /

    返回文章
    返回