Research progress on local adaptation in plants
-
摘要: 物种在空间异质性环境中容易受到不同的选择压力;如果本地基因型的适合度高于外来基因型,将导致局部适应性的产生。局部适应性强度是由自然选择、基因流以及其它进化力量的相互平衡决定的。局部适应性对于物种能否在快速变化的环境中长期生存非常关键。因此,在全球气候变化背景下,有关局部适应性的研究已逐渐成为进化生物学领域的研究前沿。本文从概念的提出与发展、成因、相关遗传基础及主要研究方法等方面对植物局部适应性这一生物学问题进行综述,探讨了目前主要的研究进展和存在的问题,展望了未来的研究前景,以加深对植物局部适应性及其遗传基础的全面认识与深刻理解。Abstract: Divergent local adaptation often occurs in spatially heterogeneous environments. Under distinct selective pressure, where a population occurs, local genotypes have higher fitness in their local habitat than individuals from elsewhere, termed local adaptation. The magnitude of local adaptation is determined by interactions among evolutionary forces, such as selection and gene flow. Local adaptation plays an important role in species persistence in the face of rapid environmental change. Thus, studies on local adaptation have become a research frontier and hot topic in evolutionary biology. To understand the hereditary basis of local adaptation, we summarize recent research advances in plant local adaptation, with discussion on the concept of local adaptation as well as its main driving factors, genetic basis, and popular research methods. We also discuss existing problems and future directions for studies on local adaptation.
-
Keywords:
- Local adaptation /
- Genetic basis /
- Population genomics /
- Field experiment /
- Association analysis
-
-
[1] Bridle JR, Vines TH. Limits to evolution at range margins:when and why does adaptation fail?[J].Trends Ecol Evol, 2007, 22(3):140-147.
[2] Delph LF. The study of local adaptation:a thriving field of research[J]. J Hered, 2018, 109(1):1-2.
[3] Savolainen O, Lascoux M, Merila J. Ecological genomics of local adaptation[J]. Nat Rev Genet, 2013, 14(11):807-820.
[4] Sork VL. Genomic studies of local adaptation in natural plant populations[J]. J Hered, 2018, 109(1):3-15.
[5] Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, et al. Finding the genomic basis of local adaptation:pitfalls, practical solutions, and future directions[J]. Am Nat, 2016, 188(4):379-397.
[6] Anderson JT, Willis JH, Mitchell-Olds T. Evolutionary genetics of plant adaptation[J]. Trends Genet, 2011, 27(7):258-266.
[7] Peterson ML, Kay KM, Angert AL. The scale of local adaptation in Mimulus guttatus:comparing life history races, ecotypes, and populations[J]. New Phytol, 2016, 211(1):345-356.
[8] Aitken SN, Whitlock MC. Assisted gene flow to facilitate local adaptation to climate change[J]. Annu Rev Ecol Evol S, 2013, 44(1):367-388.
[9] Jordan DS. The origin of species through isolation[J]. Science, 1905, 22(566):545-562.
[10] Parmesan C. Ecological and evolutionary responses to recent climate change[J]. Annu Rev Ecol Evol S, 2006, 37(1):637-669.
[11] Hoffmann AA, Sgro CM. Climate change and evolutionary adaptation[J]. Nature, 2011, 470(7335):479-485.
[12] Turesson G. The genotypical response of the plant species to the habitat[J]. Hereditas, 1922, 3(3):211-350.
[13] Clausen J, Keck DD, Hiesey WM. Regional differentiation in plant species[J] .Am Nat, 1941, 75:231-250.
[14] Williams GC. Natural selcetion costs of reproduction and a refinement of lack principle[J]. Am Nat, 1966, 100(916):687-690.
[15] Kawecki TJ, Ebert D. Conceptual issues in local adaptation[J]. Ecology Lett, 2004, 7(12):1225-1241.
[16] Blanquart F, Kaltz O, Nuismer SL, Gandon S. A practical guide to measuring local adaptation[J]. Ecol Lett, 2013, 16(9):1195-1205.
[17] Kujala ST, Knurr T, Karkkainen K, Neale DB, Sillanpaa MJ, Savolainen O. Genetic heterogeneity underlying variation in a locally adaptive clinal trait in Pinus sylvestris revealed by a bayesian multipopulation analysis[J]. Here-dity, 2017, 118(5):413-423.
[18] Tigano A, Friesen VL. Genomics of local adaptation with gene flow[J]. Mol Ecol, 2016, 25(10):2144-2164.
[19] Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes[J]. Mol Ecol, 2016, 25(1):104-120.
[20] Barth JMI, Berg PR, Jonsson PR, Bonanomi S, Corell H, et al. Genome architecture enables local adaptation of Atlantic cod despite high connectivity[J]. Mol Ecol, 2017, 26(17):4452-4466.
[21] Friedline CJ, Lind BM, Hobson EM, Harwood DE, Mix AD, et al. The genetic architecture of local adaptation Ⅰ:the genomic landscape of foxtail pine (Pinus balfouriana Grev. & Balf.) as revealed from a high-density linkage map[J]. Tree Genet Genomes, 2015, 11(3):1-15.
[22] Barrett RD, Hoekstra HE. Molecular spandrels:tests of adaptation at the genetic level[J]. Nat Rev Genet, 2011, 12(11):767-780.
[23] Ferris KG, Barnett LL, Blackman BK, Willis JH. The genetic architecture of local adaptation and reproductive isolation in sympatry within the Mimulus guttatus species complex[J]. Mol Ecol, 2017, 26(1):208-224.
[24] Qiu J, Zhou Y, Mao L, Ye C, Wang W, et al. Genomic variation associated with local adaptation of weedy rice during de-domestication[J]. Nat Commun, 2017, 8:15323.
[25] VanWallendael A, Soltani A, Emery NC, Peixoto MM, Olsen J, Lowry DB. A molecular view of plant local adaptation:incorporating stress-response networks[J]. Annu Rev Plant Biol, 2019, 70:559-583.
[26] Allard A, Bink M, Martinez S, Kelner JJ, Legave JM, et al. Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population[J]. J Exp Bot, 2016, 67(9):2875-2888.
[27] Liang YM, Liu Q, Wang XF, Huang C, Xu GH, et al. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation[J]. New Phytol, 2019, 221(4):2335-2347.
[28] Salome PA, Bomblies K, Laitinen RAE, Yant L, Mott R, Weigel D. Genetic architecture of flowering-time variation in Arabidopsis thaliana[J]. Genetics, 2011, 188(2):421-433.
[29] Mendez-Vigo B, Pico FX, Ramiro M, Martinez-Zapater JM, Alonso-Blanco C. Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis[J] .Plant Physiol, 2011, 157(4):1942-1955.
[30] Johansson, J, Bolmgren K, Jonze'n N. Climate change and the optimal flowering time of annualplants in seasonal environments[J]. Global Change Biol, 2013, 19(1):197-207.
[31] Price N, Lopez L, Platts AE, Lasky JR. In the presence of population structure:from genomics to candidate genes underlying local adaptation[J]. Ecol Evol, 2020, 10(4):1889-1904.
[32] Grabowski PP, Evans J, Daum C, Deshpande S, Barry KW, et al. Genome-wide associations with flowering time in switchgrass using exome-capture sequencing data[J]. New Phytol, 2017, 213(1):154-169.
[33] Hall MC, Willis JH. Divergent selection on flowering time contributes to local adaptation in Mimulus guttatus populations[J]. Evolution, 2006, 60(12):2466-2477.
[34] Qian CJ, Yan X, Shi Y, Yin HX, Chang YX, et al. Adaptive signals of flowering time pathways in wild barley from Israel over 28 generations[J]. Heredity, 2020, 124(1):62-76.
[35] Walden N, Lucek K, Willi Y. Lineage-specific adaptation to climate involves flowering time in North American Arabidopsis lyrata[J]. Mol Ecol, 2020, 29(8):1436-1451.
[36] McKown AD, Klapste J, Guy RD, El-Kassaby YA, Mansfield SD. Ecological genomics of variation in bud-break phenology and mechanisms of response to climate warming in Populus trichocarpa[J]. New Phytol, 2018, 220(1):300-316.
[37] Zou YP, Hou XH, Wu Q, Chen JF, Li ZW, et al. Adaptation of Arabidopsis thaliana to the Yangtze River basin[J]. Genome Biol, 2017, 18(1):239.
[38] Niu XM, Xu YC, Li ZW, Bian YT, Hou XH, et al. Transposable elements drive rapid phenotypic variation in Capsella rubella[J]. Proc Natl Acad Sci USA, 2019, 116(14):6908-6913.
[39] Savolainen O, Pyhajarvi T, Knurr T. Gene flow and local adaptation in trees[J]. Annu Rev Ecol Evol S, 2007, 38:595-619.
[40] Guo X, Khare S, Silvestro R, Huang J, Sylvain JD, et al. Minimum spring temperatures at the provenance origin drive leaf phenology in sugar maple populations[J]. Tree Physiol, 2020, 40(12):1639-1647.
[41] Alberto FJ, Derory J, Boury C, Frigerio JM, Zimmermann NE, Kremer A. Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea[J]. Genetics, 2013, 195(2):495-512.
[42] Hallingback HR, Fogelqvist J, Powers SJ, Turrion-Gomez J, Rossiter R, et al. Association mapping in Salix viminalis L. (Salicaceae)-identification of candidate genes asso-ciated with growth and phenology[J]. GCB Bioenergy, 2016, 8(3):670-685.
[43] Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations[J]. New Phytol, 2014, 203(1):32-43.
[44] Maron JL, Elmendorf SC, Vila M. Contrasting plant phy-siological adaptation to climate in the native and introduced range of Hypericum perforatum[J]. Evolution, 2007, 61(8):1912-1924.
[45] Kang JQ, Zhang HT, Sun TS, Shi YH, Wang JQ, et al. Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China[J]. New Phytol, 2013, 199(4):1069-1080.
[46] Shu K, Zhou WG, Chen F, Luo XF, Yang WY. Abscisic acid and gibberellins antagonistically mediate plant deve-lopment and abiotic stress responses[J]. Front Plant Sci, 2018, 9:8.
[47] Brunakova K, Petijova L, Zamecnik J, Tureckova V, Cellarova E. The role of ABA in the freezing injury avoidance in two Hypericum species differing in frost tolerance and potential to synthesize hypericins[J]. Plant Cell Tiss Org, 2015, 122(1):45-56.
[48] Barboza L, Effgen S, Alonso-Blanco C, Kooke R, Keurentjes JJB, et al. Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley[J]. Proc Natl Acad Sci USA, 2013, 110(39):15818-15823.
[49] Verhoeven KJF, Vonholdt BM, Sork VL. Epigenetics in ecology and evolution:what we know and what we need to know introduction[J]. Mol Ecol, 2016, 25(8):1631-1638.
[50] Platt A, Gugger PF, Pellegrini M, Sork VL. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations[J]. Mol Ecol, 2015, 24(15):3823-3830.
[51] Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet, 2010, 11(3):204-220.
[52] Gugger PF, Fitz-Gibbon S, Pellegrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients[J]. Mol Ecol, 2016, 25(8):1665-1680.
[53] Dubin MJ, Zhang P, Meng DZ, Remigereau MS, Osborne EJ, et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation[J]. Elife, 2015, 4:23.
[54] Mimura M, Aitken SN. Local adaptation at the range peripheries of Sitka spruce[J]. J Evol Biol, 2010, 23(2):249-258.
[55] Dudaniec RY, Yong CJ, Lancaster LT, Svensson EI, Hansson B. Signatures of local adaptation along environmental gradients in a range-expanding damselfly (Ischnura elegans)[J]. Mol Ecol, 2018, 27(11):2576-2593.
[56] Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, et al. Population genomics and local adaptation in wild isolates of a model microbial eukaryote[J]. Proc Natl Acad Sci USA, 2011, 108(7):2831-2836.
[57] Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. Putting the landscape into the genomics of trees:approaches for understanding local adaptation and population responses to changing climate[J]. Tree Genet Genomes, 2013, 9(4):901-911.
[58] Card DC, Schield DR, Castoe TA. Plasticity and local adaptation explain lizard cold tolerance[J]. Mol Ecol, 2018, 27(9):2173-2175.
[59] Eckert AJ, Maloney PE, Vogler DR, Jensen CE, Mix AD, Neale DB. Local adaptation at fine spatial scales:an example from sugar pine (Pinus lambertiana, Pinaceae)[J]. Tree Genet Genomes, 2015, 11(3):42.
[60] Rellstab C, Fischer MC, Zoller S, Graf R, Tedder A, et al. Local adaptation (mostly) remains local:reassessing environmental associations of climate-related candidate SNPs in Arabidopsis halleri[J]. Heredity, 2017, 118(2):193-201.
[61] Linhart YB, Grant MC. Evolutionary significance of local genetic differentiation in plants[J]. Annu Rev Ecol Syst, 1996, 27:237-277.
[62] De Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I. Common garden experiments in the genomic era:new perspectives and opportunities[J]. Heredity, 2016, 116(3):249-254.
[63] Lind BM, Menon M, Bolte CE, Faske TM, Eckert AJ. The genomics of local adaptation in trees:are we out of the woods yet?[J]. Tree Genet Genomes, 2018, 14(2):29.
[64] Leimu R, Fischer M. A meta-analysis of local adaptation in plants[J]. PLoS One, 2008, 3(12).
[65] Popovic D, Lowry DB. Contrasting environmental factors drive local adaptation at opposite ends of an environmental gradient in the yellow monkeyflower (Mimulus guttatus)[J]. Am J Bot, 2020, 107(2):298-307.
[66] McKay JK, Latta RG. Adaptive population divergence:markers, QTL and traits[J] .Trends Ecol Evol, 2002, 17(6):285-291.
[67] Leinonen T, O'Hara RB, Cano JM, Merila J. Comparative studies of quantitative trait and neutral marker divergence:a meta-analysis[J]. J Evolution Biol, 2008, 21(1):1-17.
[68] Wright S. An analysis of local variability of flower color in Linanthus parryae[J]. Genetics, 1943, 28(2):139-156.
[69] Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags[J]. PLoS Genet, 2010, 6(2):23.
[70] Oleksyk TK, Smith MW, O'Brien SJ. Genome-wide scans for footprints of natural selection[J]. Philos T R Soc B, 2010, 365(1537):185-205.
[71] Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics:from genotyping to genome typing[J]. Nat Rev Genet, 2003, 4(12):981-994.
[72] Schlotterer C. Hitchhiking mapping-functional genomics from the population genetics perspective[J]. Trends in Genet, 2003, 19(1):32-38.
[73] Eveno E, Collada C, Guevara MA, Leger V, Soto A, et al. Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses[J]. Mol Biol Evol, 2008, 25(2):417-437.
[74] Lewontin RC, Krakauer J. Distribution of gene frequency as a test of theory of selective neutrality of polymorphisms[J]. Genetics, 1973, 74(1):175-195.
[75] De Mita S, Thuillet AC, Gay L, Ahmadi N, Manel S, et al. Detecting selection along environmental gradients:analysis of eight methods and their effectiveness for outbree-ding and selfing populations[J]. Mol Ecol, 2013, 22(5):1383-1399.
[76] Siol M, Wright SI, Barrett SC. The population genomics of plant adaptation[J]. New Phytol, 2010, 188(2):313-332.
[77] Kubota S, Iwasaki T, Hanada K, Nagano AJ, Fujiyama A, et al. A genome scan for genes underlying microgeographic-scale local adaptation in a wild Arabidopsis species[J]. PLoS Genet, 2015, 11(7):26.
[78] Anderson JT, Lee CR, Rushworth CA, Colautti RI, Mitchell-Olds T. Genetic trade-offs and conditional neutrality contribute to local adaptation[J]. Mol Ecol, 2013, 22(3):699-708.
[79] Leinonen PH, Remington DL, Leppala J, Savolainen O. Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata[J]. Mol Ecol, 2013, 22(3):709-723.
[80] Engelmann K, Purugganan M. The molecular evolutionary ecology of plant development:flowering time in Arabidopsis thaliana[J]. Adv Bot Res, 2006, 44:507-526.
[81] Ågren J, Oakley CG, McKay JK, Lovell JT, Schemske DW. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2013, 110(52):21077-21082.
[82] Slate J. Quantitative trait locus mapping in natural populations:progress, caveats and future directions[J]. Mol Ecol, 2005, 14(2):363-379.
[83] Song BH, Mitchell-Olds T. Evolutionary and ecological genomics of non-model plants[J]. J Syst Evol, 2011, 49(1):17-24.
[84] Goto S, Kajiya-Kanegae H, Ishizuka W, Kitamura K, Ueno S, et al. Genetic mapping of local adaptation along the altitudinal gradient in Abies sachalinensis[J]. Tree Genet Genomes, 2017, 13(5):104.
[85] Vasemagi A, Primmer CR. Challenges for identifying functionally important genetic variation:the promise of combining complementary research strategies[J]. Mol Ecol, 2005, 14(12):3623-3642.
[86] Castillo A, Dorado G, Feuillet C, Sourdille P, Hernandez P. Genetic structure and ecogeographical adaptation in wild barley (Hordeum chilense Roemer et Schultes) as revealed by microsatellite markers[J]. BMC Plant Biol, 2010, 10(13):266.
[87] Eckert AJ, Bower AD, Gonzalez-Martinez SC, Wegrzyn JL, Coop G, Neale DB. Back to nature:ecological genomics of loblolly pine (Pinus taeda, Pinaceae)[J]. Mol Ecol, 2010, 19(17):3789-3805.
[88] Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R. Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina[J]. Mol Ecol, 2010, 19(17):3824-3835.
[89] Housset JM, Nadeau S, Isabel N, Depardieu C, Duche-sne I, et al. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change[J]. New Phytol, 2018, 218(2):630-645.
[90] Li Y, Cheng RY, Spokas KA, Palmer AA, Borevitz JO. Genetic variation for life history sensitivity to seasonal warming in Arabidopsis thaliana[J]. Genetics, 2014, 196(2):569-577.
[91] Shah N, Wakabayashi T, Kawamura Y, Skoybjerg CK, Wang MZ, et al. Extreme genetic signatures of local adaptation during Lotus japonicus colonization of Japan[J]. Nat Commun, 2020, 11(1):15.
[92] Neale DB, Savolainen O. Association genetics of complex traits in conifers[J]. Trends Plant Sci, 2004, 9(7):325-330.
[93] Aguirre-Liguori JA, Tenaillon MI, Vazquez-Lobo A, Gaut BS, Jaramillo-Correa JP, et al. Connecting genomic patterns of local adaptation and niche suitability in teosintes[J]. Mol Ecol, 2017, 26(16):4226-4240.
[94] Abebe TD, Naz AA, Leon J. Landscape genomics reveal signatures of local adaptation in barley (Hordeum vulgare L.)[J]. Front Plant Sci, 2015, 6:813.
[95] Leger EA, Espeland EK, Merrill KR, Meyer SE. Genetic variation and local adaptation at a cheatgrass (Bromus tectorum) invasion edge in western Nevada[J]. Mol Ecol, 2009, 18(21):4366-4379.
[96] Todesco M, Owens GL, Bercovich N, Legare JS, Soudi S, et al. Massive haplotypes underlie ecotypic differentiation in sunflowers[J]. Nature, 2020, 584(7822):602-607.
[97] Turner TL, Bourne EC, von Wettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils[J]. Nat Genet, 2010, 42(3):260-263.
[98] Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, et al. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions[J]. Mol Ecol, 2016, 25(23):5907-5924.
[99] De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J. Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa[J]. Mol Ecol, 2014, 23(19):4709-4721.
[100] Lenormand T. Gene flow and the limits to natural selection[J]. Trends Ecol Evol, 2002, 17(4):183-189.
[101] Jacob S, Legrand D, Chaine AS, Bonte D, Schtickzelle N, et al. Gene flow favours local adaptation under habitat choice in ciliate microcosms[J]. Nat Ecol Evol, 2017, 1(9):1407-1410.
计量
- 文章访问数: 1333
- HTML全文浏览量: 92
- PDF下载量: 751