高级检索+

植物褪黑素生物合成研究进展

杨思葭, 赵雨晴, 陈涛, 袁明

杨思葭, 赵雨晴, 陈涛, 袁明. 植物褪黑素生物合成研究进展[J]. 植物科学学报, 2021, 39(2): 211-220. DOI: 10.11913/PSJ.2095-0837.2021.20211
引用本文: 杨思葭, 赵雨晴, 陈涛, 袁明. 植物褪黑素生物合成研究进展[J]. 植物科学学报, 2021, 39(2): 211-220. DOI: 10.11913/PSJ.2095-0837.2021.20211
Yang Si-Jia, Zhao Yu-Qing, Chen Tao, Yuan Ming. Research progress on plant melatonin biosynthesis[J]. Plant Science Journal, 2021, 39(2): 211-220. DOI: 10.11913/PSJ.2095-0837.2021.20211
Citation: Yang Si-Jia, Zhao Yu-Qing, Chen Tao, Yuan Ming. Research progress on plant melatonin biosynthesis[J]. Plant Science Journal, 2021, 39(2): 211-220. DOI: 10.11913/PSJ.2095-0837.2021.20211
杨思葭, 赵雨晴, 陈涛, 袁明. 植物褪黑素生物合成研究进展[J]. 植物科学学报, 2021, 39(2): 211-220. CSTR: 32231.14.PSJ.2095-0837.2021.20211
引用本文: 杨思葭, 赵雨晴, 陈涛, 袁明. 植物褪黑素生物合成研究进展[J]. 植物科学学报, 2021, 39(2): 211-220. CSTR: 32231.14.PSJ.2095-0837.2021.20211
Yang Si-Jia, Zhao Yu-Qing, Chen Tao, Yuan Ming. Research progress on plant melatonin biosynthesis[J]. Plant Science Journal, 2021, 39(2): 211-220. CSTR: 32231.14.PSJ.2095-0837.2021.20211
Citation: Yang Si-Jia, Zhao Yu-Qing, Chen Tao, Yuan Ming. Research progress on plant melatonin biosynthesis[J]. Plant Science Journal, 2021, 39(2): 211-220. CSTR: 32231.14.PSJ.2095-0837.2021.20211

植物褪黑素生物合成研究进展

基金项目: 

国家自然科学基金项目(31801826)。

详细信息
    作者简介:

    杨思葭(1997-),女,硕士研究生,研究方向为植物生理学(E-mail:xiaoyangyang26@126.com)。

    通讯作者:

    袁明,E-mail:yuanming@sicau.edu.cn

  • 中图分类号: Q946

Research progress on plant melatonin biosynthesis

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31801826).

  • 摘要: 褪黑素是生物进化过程中一种保守的小分子物质,在动物体内主要参与昼夜节律调节。国内外学者致力于植物褪黑素的合成途径、生理功能及作用机制研究,发现其参与了植物生长发育(根系发育、果实发育)及细胞氧化还原平衡的调节等。在植物褪黑素合成途径研究方面,已发现褪黑素存在于多种植物中并克隆出其合成相关基因。在不同植物中,褪黑素合成相关蛋白的亚细胞定位存在较大差异,合成部位也因植物种类不同存在差异。本文综述了植物褪黑素的合成途径、亚细胞定位合成调控的研究现状,重点论述了亚细胞定位、酶动力学对合成上游的调控,并对其研究前景进行了展望。
    Abstract: Melatonin is a conserved small molecule substance in the process of biological evolution and is involved in the regulation of circadian rhythm in animals. Since the discovery of plant melatonin, scholars have studied its synthesis pathways, physiological functions, and mechanisms of action, and found that it is involved in the regulation of plant growth and development (root and fruit development) and cell redox balance. For the plant melatonin synthesis pathway, researchers have found that melatonin exists in a variety of plants and its synthesis-related genes have been cloned. The subcellular localization of melatonin synthesis-related proteins differs among plants, and thus the synthesis site also differs from plant to plant. This article reviews the current status of research on the plant melatonin synthesis pathways, subcellular localization, and synthesis regulation, with a focus on the regulation of subcellular localization and enzyme kinetics in upstream synthesis. We also discuss prospects for future research.
  • [1]

    Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, a pineal factor that lightens melanocytes[J]. J Am Chem Soc, 1958, 80:2587.

    [2]

    Reiter RJ. Pineal melatonin:cell biology of its synthesis and of its physiological interactions[J]. Endocr Rev, 1991, 12(2):151-180.

    [3]

    Tilden AR, Becker MA, Amma LL, Arciniega J, McGaw AK. Melatonin production in an aerobic photosynthetic bacterium:an evolutionarily early association with darkness[J]. J Pineal Res, 1997, 22(2):102-106.

    [4]

    Pevet P. Melatonin:from seasonal to circadian signal[J]. J Neuroendocrinol, 2003, 15(4):422-426.

    [5]

    Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases[J]. J Pineal Res, 2011, 51(1):17-43.

    [6]

    Zang MH, Zhao YC, Gao LC, Zhong FY, Qin ZH, et al. The circadian nuclear receptor ROR alpha negatively regulates cerebral ischemia-reperfusion injury and mediates the neuroprotective effects of melatonin[J]. BBA-Mol Basis Dis, 2020, 1866(11):165890.

    [7]

    Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, et al. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants[J]. J Pineal Res, 2016, 61(4):457-469.

    [8]

    Chang JJ, Guo YL, Zhang ZX, Wei CH, Zhang Y, et al. CBF-responsive pathway and phytohormones are involved in melatonin-improved photosynthesis and redox homeostasis under aerial cold stress in watermelon[J]. Acta Physiol Plant, 2020, 42(10):159.

    [9]

    El-Bakry HA, Ismail IA, Soliman SS. Immunosenescence-like state is accelerated by constant light exposure and counteracted by melatonin or turmeric administration through DJ-1/Nrf2 and P53/Bax pathways[J]. J Photoch Photobio B, 2018, 186:69-80.

    [10]

    Qi CD, Zhang HJ, Liu Y, Wang XY, Dong DH, et al. CsSNAT positively regulates salt tolerance and growth of cucumber by promoting melatonin biosynthesis[J]. Environ Exp Bot, 2020, 175:104036.

    [11]

    He JL, Zhuang XL, Zhou JT, Sun LY, Wan HX, et al. Exogenous melatonin alleviates cadmium uptake and toxicity in apple rootstocks[J]. Tree Physiol, 2020, 40(6):746-761.

    [12]

    Arnao MB, Hernandez-Ruiz J. Functions of melatonin in plants:a review[J]. J Pineal Res, 2015, 59(2):133-150.

    [13]

    Zhao D, Yu Y, Shen Y, Liu Q, Zhao ZW, et al. Melatonin synthesis and function:evolutionary history in animals and plants[J]. Frontiers, 2019, 10:249-265.

    [14]

    Tan DX, Manchester LC, Liu XY, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis:a hypothesis related to melatonin's primary function and evolution in eukaryotes[J]. J Pineal Res, 2013, 54(2):127-138.

    [15]

    Arnao MB, Hernández-Ruiz J. Melatonin and reactive oxygen and nitrogen species:a model for the plant redox network[J]. Melatonin Res, 2019, 2(3):152-168.

    [16]

    Lee K, Back K. Melatonin-deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis[J]. J Pineal Res, 2019, 66(2):e12537.

    [17]

    Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, et al. HsfA1a upregulates melatonin biosynthesis to confer cadmium tole-rance in tomato plants[J]. J Pineal Res, 2017, 62(2):e12387.

    [18] 王琳. 珠眉海棠(Malus zumi Mats)中褪黑素合成酶黑暗下的转录调控及其泛素化降解的分子机制[D]. 北京:中国农业大学, 2018.
    [19]

    Jones MPA, Cao J, O'Brien R, Murch SJ, Saxena PK. The mode of action of thidiazuron:auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L.[J]. Plant Cell Rep, 2007, 26(9):1481-1490.

    [20]

    Van Tassel DL, O'Neill SD. Putative regulatory molecules in plants:evaluating melatonin[J]. J Pineal Res, 2001, 31(1):1-7.

    [21]

    Facchini PJ, Huber-Allanach KL, Tari LW. Plant aromatic L-amino acid decarboxylases:evolution, biochemistry, regulation, and metabolic engineering applications[J]. Phytochemistry, 2000, 54(2):121-138.

    [22]

    Fitzpatrick PF. Tetrahydropterin-dependent amino acid hydroxylases[J]. Annu Rev Biochem, 1999, 68:355-381.

    [23]

    Lee K, Lee HY, Back K. Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants[J]. J Pineal Res, 2018, 64(2):e12460.

    [24]

    Back K, Tan DX, Reiter RJ. Melatonin biosynthesis in plants:multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts[J]. J Pineal Res, 2016, 61(4):426-437.

    [25]

    Erland LAE, Yasunaga A, Li ITS, Murch SJ, Saxena PK. Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress[J]. J Pineal Res, 2019, 66(1):e12527.

    [26]

    Lee HY, Lee K, Back K. Knockout of Arabidopsis serotonin N-acetyltransferase-2 reduces melatonin levels and delays flowering[J]. Biomolecules, 2019, 9(11):712.

    [27]

    Verde A, Miguez JM, Gallardo M. Melatonin and related bioactive compounds in commercialized date palm fruits (Phoenix dactylifera L.):correlation with some antioxidant parameters[J]. Eur Food Res Technol, 2019, 245(1):51-59.

    [28]

    Zhao Y, Tan DX, Lei Q, Chen H, Wang L, et al. Melatonin and its potential biological functions in the fruits of sweet cherry[J]. J Pineal Res, 2012, 55(1):79-88.

    [29]

    Xu LL, Yue QY, Bian FE, Zhai H, Yao YX. Melatonin treatment enhances the polyphenol content and antioxidant capacity of red wine[J]. Hortic Plant J, 2018, 4(4):144-150.

    [30]

    Okazaki M, Ezura H. Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar micro-tom[J]. J Pineal Res, 2009, 46(3):338-343.

    [31]

    Vitalini S, Gardana C, Zanzotto A, Simonetti P, Faoro F, et al. The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues[J]. J Pineal Res, 2011, 51(3):331-337.

    [32]

    Wang L, Feng C, Zheng XD, Guo Y, Zhou FF, et al. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress[J]. J Pineal Res, 2017, 63(3):e12429.

    [33]

    Kang K, Lee K, Park S, Byeon Y, Back K. Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis[J]. J Pineal Res, 2013, 55(1):7-13.

    [34]

    Kang K, Kong K, Park S, Natsagdorj U, Kim YS, Back K. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice[J]. J Pineal Res, 2011, 50(3):304-309.

    [35]

    Lee HY, Byeon Y, Lee K, Lee HJ, Back K. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations[J]. J Pineal Res, 2014, 57(4):418-426.

    [36]

    Byeon Y, Lee HY, Lee KJ, Park S, Back K. Cellular loca-lization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT[J]. J Pineal Res, 2014, 56(1):107-114.

    [37]

    Byeon Y, Lee HY, Back K. Cloning and characterization of the serotonin N-acetyltransferase-2 gene (SNAT2) in rice (Oryza sativa)[J]. J Pineal Res, 2016, 61(2):198-207.

    [38]

    Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development[J]. Nat Genet, 2017, 49(7):1099-1106.

    [39]

    Wang XY, Zhang HJ, Xie Q, Liu Y, Lv HM, et al. SlSNAT interacts with HSP40, a molecular chaperone, to regulate melatonin biosynthesis and promote thermotolerance in tomato[J]. Plant Cell Physiol, 2020, 61(5):909-921.

    [40]

    Park S, Byeon Y, Back K. Functional analyses of three ASMT gene family members in rice plants[J]. J Pineal Res, 2013, 55(4):409-415.

    [41]

    Zuo BX, Zheng XD, He PL, Wang L, Lei Q, et al. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants[J]. J Pineal Res, 2014, 57(4):408-417.

    [42]

    Zheng XD, Tan DX, Allan AC, Zuo BX, Zhao Y, et al. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress[J]. Sci Rep, 2017, 7:41236.

    [43]

    Liu DD, Sun XS, Liu L, Shi HD, Chen SY, Zhao DK. Overexpression of the melatonin synthesis-related geneSlCOMT1 improves the resistance of tomato to salt stress[J]. Molecules, 2019, 24(8):1514.

    [44]

    Stevens LH, Blom TJ, Verpoorte R. Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata[J]. Plant Cell Rep, 1993, 12(10):573-576.

    [45]

    De Luca V, Cutler AJ. Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus[J]. Plant Physiol, 1987, 85(4):1099-1102.

    [46]

    Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen LT, et al. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice[J]. J Biol Chem, 2010, 285(15):11308-11313.

    [47]

    Weissbach H, Redfieid BG, Axelrod J. Biosynthesis of melatonin:enzymic conversion of serotonin to N-acetylserotonin[J]. Biochim Biophys Acta, 1960, 43(2):352-353.

    [48]

    Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine:comparisons across species[J]. J Pineal Res, 2016, 61(1):27-40.

    [49]

    Park S, Byeon Y, Kim YS, Back K. Kinetic analysis of purified recombinant rice N-acetylserotonin methyltransferase and peak melatonin production in etiolated rice shoots[J]. J Pineal Res, 2013, 54(2):139-144.

    [50]

    Lee HY, Back K. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana[J]. J Pineal Res, 2018, 65(3):e12504.

    [51]

    Lei Q, Wang L, Tan DX, Zhao Y, Zheng XD, et al. Identification of genes for melatonin synthetic enzymes in ‘Red Fuji’ apple (Malus domestica Borkh. cv. Red) and their expression and melatonin production during fruit development[J]. J Pineal Res, 2013, 55(4):443-451.

    [52]

    Wei YX, Liu GY, Bai YJ, Xia FY, He CZ, Shi HT. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava[J]. J Exp Bot, 2017, 68(17):4997-5006.

    [53]

    Lee K, Choi GH, Back K. Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide:key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase[J]. J Pineal Res, 2017, 63(4):e12441.

    [54]

    Kocturk S, Egrilmez MY, Aktan S, Oktay G, Resmi H, et al. Melatonin attenuates the detrimental effects of UVA irradiation in human dermal fibroblasts by suppressing oxidative damage and MAPK/AP-1 signal pathway in vitro[J]. Photodermatol Photo, 2019, 35(4):221-231.

    [55]

    Facchini PJ, Huber-Allanach K, Tari LW. Plant aromatic L-amino acid decarboxylase:evolution, biochemistry, regulation, and metabolic engineering applications[J]. Phytochemistry, 2000, 54(2):121-138.

    [56]

    Fiore S, Li Q, Leech MJ, Schuster F, Emans N, et al. Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype[J]. Plant Physiol, 2002, 129(3):1160-1169.

    [57]

    Kang S, Kang K, Lee K, Back K. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice[J]. Planta, 2007, 227(1):263-272.

    [58]

    Byeon Y, Park S, Lee HY, Kim YS, Back K. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase[J]. J Pineal Res, 2014, 56(3):275-282.

    [59]

    Park S, Lee K, Kim YS, Back K. Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves[J]. J Pineal Res, 2012, 52(2):211-216.

    [60]

    Park S, Kang K, Lee SW, Ahn MJ, Bae JM, Back K. Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli[J]. Appl Microbiol Biotechnol, 2011, 89(5):1387-1394.

    [61]

    Park S, Byeon Y, Back K. Transcriptional suppression of tryptamine 5-hydroxylase, a terminal serotonin biosynthetic gene, induces melatonin biosynthesis in rice (Oryza sativa L.)[J]. J Pineal Res, 2013, 55(2):131-137.

    [62]

    Byeon Y, Back K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities[J]. J Pineal Res, 2014, 56(2):189-195.

    [63]

    Galzin AM, Eon MT, Esnaud H, Lee CR, Pevet P, Langer SZ. Day-night rhythm of 5-methoxytryptamine biosynthesis in the pineal gland of the golden hamster (Mesocricetus auratus)[J]. J Endocrinol, 1988, 118(3):389-397.

    [64]

    Byeon Y, Lee HJ, Lee HY, Back K. Cloning and functio-nal characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis[J]. J Pineal Res, 2016, 60(1):65-73.

    [65]

    Byeon Y, Choi GH, Lee HY, Back K. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice[J]. J Exp Bot, 2015, 66(21):6917-6925.

    [66]

    Byeon Y, Lee HY, Hwang OJ, Lee HJ, Lee K, Back K. Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment[J]. J Pineal Res, 2015, 58(4):470-478.

    [67]

    Ye T, Hao YH, Yu L, Shi HT, Reiter RJ, Feng YQ. A simple, rapid method for determination of melatonin in plant tissues by UPLC coupled with high resolution orbitrap mass spectrometry[J]. Front Plant Sci, 2017, 8:64.

    [68]

    Byeon Y, Back K. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions[J]. J Pineal Res, 2016, 60(3):348-359.

    [69]

    Hernandez IG, Gomez FJV, Cerutti S, Arana MV, Silva MF. Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations[J]. Plant Physiol Bioch, 2015, 94:191-196.

    [70]

    Back K. Melatonin metabolism, signaling and possible roles in plants[J]. Plant J, 2020, 105(2):376-391.

计量
  • 文章访问数:  1771
  • HTML全文浏览量:  102
  • PDF下载量:  800
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-11-03
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-04-27

目录

    /

    返回文章
    返回