Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants
-
摘要: 植物次生代谢产物是通过次生代谢产生的一类小分子有机化合物,是植物适应环境的表现,次生代谢产物也是重要药物和化工原料的来源。bZIP转录因子是普遍存在于真核生物中的一类多基因家族,可有效调控植物次生代谢产物的生物合成。本文概述了植物bZIP转录因子的结构和类型,重点阐述了bZIP转录因子调控萜类、黄酮类和生物碱等植物次生代谢产物生物合成的研究进展,并对研究前景进行了展望。深入探讨bZIP转录因子的调控机制,有助于利用基因工程技术优化植物次生代谢途径,提高次生代谢产物的含量,在新药创制、工农业生产等方面具有广泛的应用前景。Abstract: Secondary metabolites derived from secondary metabolic pathways in plants play an important role in the adaptation of plants to the ecological environment, and represent a valuable source of natural medicines and industrial chemicals. bZIP transcription factors (TFs) belong to a large gene family and generally exist in eukaryotes. This review summarizes the structure and classification of bZIP TFs, with an emphasis on research progress, methods and the biosynthetic regulation of secondary metabolites, such as terpenoids, flavonoids and alkaloids. Future prospects are also discussed. Further research on the mechanisms of bZIP TFs will increase secondary metabolite production by genetic modification of biosynthetic pathways, with wider application prospects in medicine and industrial and agricultural production.
-
Keywords:
- bZIP /
- Plant secondary metabolites /
- Transcription factor
-
-
[1] Tian L. Using hairy roots for production of valuable plant secondary metabolites[J]. Adv Biochem Eng Biotechnol, 2015, 149:275-324.
[2] Xu ZC, Ji AJ, Zhang X, Song JY, Chen SL. Biosynthesis and regulation of active compounds in medicinal model plant Salvia miltiorrhiza[J]. Chin Tradit Herbal Drugs, 2016, 8(1):3-11.
[3] Hurst HC. Transcription factors 1:bZIP proteins[J]. Protein Profile, 1994, 1(2):123-168.
[4] Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, An G, Park PB. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. J Plant Physiol, 2010, 167(17):1512-1520.
[5] Shearer HL, Cheng YT, Wang L, Liu J, Boyle P, Després C, Zhang Y, Li X, Fobert PR. Arabidopsis cladeI TGA transcription factors regulate plant defenses in an NPR1-independent fashion[J]. Mol Plant Microbe Interact, 2012, 25(11):1459-1468.
[6] Ying S, Zhang DF, Fu J, Shi YS, Song YC, Wang TY, Li Y. Cloning and characterization of a maize bZIP transcripttion factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2):253-266.
[7] Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dr ge-Laser W. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation[J]. Plant Cell, 2009, 21(6):1747-1761.
[8] Gangappa SN, Crocco CD, Johansson H, Datta S, Hettia-rachchi C, Holm M, Botto JF. The Arabidopsis BBOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphoge-nesis[J]. Plant Cell, 2013, 25(4):1243-1257.
[9] Zhang F, Fu X, Lv Z, Lu X, Shen Q, Zhang L, Zhu M, Wang G, Sun X,Liao Z, Tang K. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua[J]. Mol Plant, 2015, 8(1):163-175.
[10] Foster R, Izawa T, Chua NH. Plant bZIP proteins gather at ACGT elements[J]. FASEB J, 1994, 8(2):192-200.
[11] Corrêa LGG, Riaño-Pachón DM, Schrago CG, Dos Santos RV, Mueller-Roeber B, Vincentz M.The role of bZIP transcription actors in green plant evolution:adaptive features emerging from four founder genes[J]. PLoS One, 2008, 13(3):e2944.
[12] Llorca CM, Potschin M, Zentgraf U. bZIPs and WRKYs:two large transcription factor families executing two diffe-rent functional strategies[J]. Front Plant Sci, 2014, 5:169.
[13] Amoutzias GD, Robertson DL, Van De Peer Y, Oliver SG. Choose your partners:dimerization in eukaryotic transcription factors[J]. Trends Biochem Sci, 2008, 33(5):220-229.
[14] Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F. The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis[J]. Plant Cell, 2002, 14(6):1391-1403.
[15] Lee S, Shuman JD, Guszczynski T, Sakchaisri K, Sebastian T, Copeland TD, Miller M, Cohen MS, Taunton J, Smart RC, Xiao Z, Yu LR, Veenstra TD, Johnson PF. RSK-mediated phosphorylation in the C/EBP leucine zipper regulates DNA binding, dimerization, and growth arrest activity[J]. Mol Cell Biol, 2010, 30(11):2621-2635.
[16] Hijazi M, Durand J, Pichereaux C, Pont F, Jamet E, Albenne C. Characterization of the arabinogalactan protein 31(AGP31) of Arabidopsis thaliana:new advances on the Hyp-O-glycosylation of the pro-rich domain[J]. J Biol Chem, 2012, 287(12):9623-9632.
[17] Glover JN, Harrison SC. Crystal structure of the hete-rodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA[J]. Nature, 1995, 373(6511):257-261.
[18] Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G.Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110.
[19] Jakoby M, Weisshaar B, Dr ge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis[J]. Trends Plant Sci, 2002, 7(3):106-111.
[20] Liu J, Chen N, Chen F, Cai B, Dal Santo S, Tornielli GB, Pezzotti M, Cheng ZM. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)[J]. BMC Genomics, 2014, 15:281.
[21] Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D. Genome-wide analysis of bZIP-encoding genes in maize[J]. DNA Res, 2012, 19(6):463-476.
[22] Nijhawan A, Jain M, Tyagi AK, Khurana JP. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiol, 2008,146(2):333-350.
[23] Jin Z, Xu W, Liu A. Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.)[J]. Planta, 2014, 239(2):299-312.
[24] Baloglu MC, Eldem V, Hajyzadeh M, Unver T. Genome-wide analysis of the bZIP transcription factors in cucumber[J]. PLoS One, 2014, 9(4):e96014.
[25] Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum[J]. J Integr Plant Biol, 2011, 53(3):212-231.
[26] Li D, Fu F, Zhang H, Song F. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.)[J]. BMC Genomics, 2015, 16(1):771-790.
[27] Liu X, Chu Z. Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon[J]. BMC Genomics, 2015, 16:227.
[28] Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J]. Planta, 2008, 228(2):225-240.
[29] Pourabed E, Ghane Golmohamadi F, Soleymani Monfared P, Razavi SM, Shobbar ZS. Basic leucine zipper family in barley:genome-wide characterization of members and expression analysis[J]. Mol Biotechnol, 2015, 57(1):12-26.
[30] Hwang I, Jung HJ, Park JI, Yang TJ, Nou IS. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response[J]. Genomics, 2014, 104(3):194-202.
[31] 陈晓亚, 刘培. 植物次生代谢的分子生物学及基因工程[J]. 生命科学, 1996, 8(2):8-11. Chen XY, Liu P. Molecular biology and genetic enginee-ring of plant secondary metabolism[J]. Life Sciences, 1996, 8(2):8-11.
[32] Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H. OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice[J]. J Biol Che, 2009, 284(39):26510-26518.
[33] Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells[J]. J Plant Physiol, 2014, 173:19-27.
[34] Fricke J, Hillebrand A, Twyman RM, Prüfer D, Schulze Gronover C. Abscisic acid-dependent regulation of small rubber particle protein gene expression in Taraxacum brevicorniculatum is mediated by TbbZIP1[J]. Plant Cell Physiol, 2013, 54(4):448-464.
[35] Dr ge-Laser W, Kaiser A, Lindsay WP, Halkier BA, Loake GJ, Doerner P, Dixon RA, Lamb C. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses[J]. EMBO J, 1997, 16(4):726-738.
[36] Zhang Y, Zheng S, Liu Z, Wang L, Bi Y. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings[J]. J Plant Physiol, 2011, 168(4):367-374.
[37] Akagi T, Katayama-Ikegami A, Kobayashi S, Sato A, Kono A, Yonemori K. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit[J]. Plant Physiol, 2012, 158(2):1089-1102.
[38] Sibéril Y, Benhamron S, Memelink J, Giglioli-Guivarćh N, Thiersault M, Boisson B, Doireau P, Gantet P. Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures[J]. Plant Mol Biol, 2001, 45(4):477-488.
[39] Eisenreich W, Bacher A, Arigoni D, Rohdich F. Biosynthesis of isoprenoids via the non-mevalonate pathway[J]. Cell Mol Life Sci, 2004, 61(12):1401-1426.
[40] Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2003, 100(11):6866-6871.
[41] White N. Qinghaosu (artemisinin):the price of success[J]. Science, 2008, 320(5874):330-334.
[42] Jing F, Zhang L, Li M, Tang Y, Wang Y, Wang Y, Wang Q, Pan Q, Wang G, Tang K. Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway[J]. Biologia, 2009, 64(2):319-323.
[43] Choi H, Hong J, Ha J, Kang J, Kim SY. ABFs, a family of ABA-responsive element binding factors[J]. J Biol Chem, 2000, 275(3):1723-1730.
[44] Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J. An update on abscisic acid signaling in plants and more[J]. Mol Plant, 2008, 1(2):198-217.
[45] Olsson ME, Olofsson LM, Lindahl AL, Lundgren A, Brodelius M, Brodelius PE. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L.[J]. Phytochemistry, 2009, 70(9):1123-1128.
[46] Banerjee A, Roychoudhury A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress[J]. Protoplasma, 2015:1-14.
[47] Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens[J]. Trends Plant Sci, 2012, 17(2):73-90.
[48] 仇健, 张继川, 罗世巧, 校现周, 王峰, 张立群, 刘实忠. 橡胶草的研究进展[J]. 植物学报, 2015, 50(1):133-141. Qiu J, Zhang JC, Luo SQ, Xiao XZ, Wang F, Zhang LQ, Liu SZ. Research advances and perspectives on rubber-producing Taraxacum[J]. Chinese Bulletin of Botany, 2015, 50(1):133-141.
[49] Collins-Silva J, Nural AT, Skaggs A, Scott D, Hathwaik U, Woolsey R, Schegg K, McMahan C, Whalen M, Cornish K, Shintani D. Altered levels of the Taraxacum koksaghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism[J]. Phytochemistry, 2012, 79:46-56.
[50] Schijlen EG, Ric de Vos CH, van Tunen AJ, Bovy AG. Modification of flavonoid biosynthesis in crop plants[J]. Phytochemistry, 2004, 65(19):2631-2648.
[51] Lawton MA, Clouse SD, Lamb CJ. Glutathione-elicited changes in chromatin structure within the promoter of the defense gene chalcone synthase[J]. Plant Cell Rep, 1990, 8(9):561-564.
[52] McCallum S, Woodhead M, Hackett CA, Kassim A, Paterson A, Graham J. Genetic and environmental effects influencing fruit colour and QTL analysis in raspberry[J]. Theor Appl Genet, 2010, 121(4):611-627.
[53] Xu HB, Song JY, Luo HM, Zhang YJ, Li QS, Zhu YJ, Xu J, Li Y, Song C, Wang B, Sun W, Shen GA, Zhang X, Qian J, Ji AJ, Xu ZC, Luo X, He L, Li CY, Sun C, Yan HX, Cui GH, Li X, Li XW, Wei JH, Liu JY, Wang YT, Hayward A, Nelson D, Ning ZM, Peters RJ, Qi XQ, Chen SL. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza[J]. Mol Plant, 2016, 9(6):949-952.
[54] Akagi T, Ikegami A, Tsujimoto T,Kobayashi S, Sato A, Kono A, Yonemori K. DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit[J]. Plant Physiol, 2009, 151(4):2028-2045.
[55] Pasquali G, Erven AS, Ouwerkerk PB, Menke FL, Memelink J. The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobaco and binds nuclear factors GT-1 and GBF[J]. Plant Mol Biol, 1999, 39(6):1299-1310.
[56] Pal T, Malhotra N, Chanumolu SK, Chauhan RS. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall[J]. Planta, 2015, 242(1):239-258.
[57] Ben-Simhon Z, Judeinstein S, Nadler-Hassar T, Trainin T, Bar-Ya'akov I, Borochov-Neori H, Holland D. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development[J]. Planta, 2011, 234(5):865-881.
[58] 魏国超, 程钧, 马百全, 王鲁, 谷超, 韩月澎. 冬性植物红菜薹在不同温度处理下花青素积累的分子机制[J]. 植物科学学报, 2014, 32(4):394-405. Wei GC, Cheng J, Ma BQ, Wang L, Gu C, Han YP. Molecular characterization of anthocyanin accumulation under different temperatures in winter plant Hongcaitai (Brassica rapa L.)[J]. Plant Science Journal, 2014, 32(4):394-405.
[59] Docimo T, Francese G, Ruggiero A, Batelli G, De Palma M, Bassolino L, Toppino L, Rotino GL, Mennella G, Tucci M. Phenylpropanoids accumulation in eggplant fruit:characterization of biosynthetic genes and regulation by a MYB transcription factor[J]. Front Plant Sci, 2016, 6:1233.
[60] Schluttenhofer C, Yuan L. Regulation of specialized metabolism by WRKY transcription factors[J]. Plant Physiol, 2015, 167(2):295-306.
[61] 季爱加, 罗红梅, 徐志超, 张鑫, 宋经元, 陈士林. 药用植物转录因子AP2/ERF研究与展望[J]. 科学通报, 2015, 60(14):1272-1284. Ji AJ, Luo HM, Xu ZC, Zhang X, Song JY, Chen SL. Research and perspectives on AP2/ERF transcription factors in medicinal plants[J]. Chinese Science Bulletin, 2015, 60(14):1272-1284.
[62] 周文平, 王怀琴, 郭晓荣, 杨新兵, 化文平, 曹晓燕. 丹参bHLH转录因子基因[STXFX]SmMYC2[STXFZ]的克隆和表达分析[J]. 植物科学学报, 2016, 34(2):246-254. Zhou WP, Wang HQ, Guo XR, Yang XB, Hua WP, Cao XY. Cloning and expression analysis of[STXFX]SmMYC2[STXFZ], a bHLH transcription factor gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2016, 34(2):246-254.
[63] 张鑫, 宋经元, 胡鸢雷, 徐江, 徐志超, 季爱加, 罗红梅, 陈士林. bHLH转录因子调控植物活性成分生物合成的研究进展[J]. 药学学报, 2014, 49(4):435-442. Zhang X, Song JY, Hu YL, Xu J, Xu ZC, Ji AJ, Luo HM, Chen SL. Research progress of the regulation on active compound biosynthesis by the bHLH transcription factors in plants[J]. Acta Pharmaceutica Sinica, 2014, 49(4):435-442.
[64] Zhang X, Luo HM, Xu ZC, Zhu YJ, Ji AJ, Song JY, Chen SL. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza[J]. Sci Rep, 2015, 5:11244.
[65] Ji AJ, Luo HM, Xu ZC, Zhang X, Zhu YJ, Liao BS, Yao H, Song JY, Chen SL. Genome-Wide identification of the AP2/ERF gene family involved in active constituent biosynthesis in Salvia miltiorrhiza[J]. Plant Genom, 2016, 9(2):1-11.
[66] Schütze K, Harter K, Chaban C. Post-translational regulation of plant bZIP factors[J]. Trends Plant Sci, 2008, 13(5):247-255.
[67] Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schütze K, Alonso R, Harter K, Vicente-Carbajosa J, Dr ge-Laser W.Combinatorial control of Arabidopsis proline dehydroge-nase transcription by specific heterodimerisation of bZIP transcription factors[J]. EMBO J, 2006, 25(13):3133-3143.
[68] Kagaya Y, Hobo T, Murata M, Ban A, Hattori T. Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1[J]. Plant Cell, 2002, 14(12):3177-3189.
[69] Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis[J]. Plant Cell, 2005, 17(5):1434-1448.
计量
- 文章访问数: 2309
- HTML全文浏览量: 46
- PDF下载量: 2452