高级检索+

蛋白质组学研究揭示的甘蓝型油菜非生物胁迫应答机制

肖振, 赵琪, 张川芳, 王小丽, 王全华, 戴绍军

肖振, 赵琪, 张川芳, 王小丽, 王全华, 戴绍军. 蛋白质组学研究揭示的甘蓝型油菜非生物胁迫应答机制[J]. 植物科学学报, 2016, 34(6): 949-961. DOI: 10.11913/PSJ.2095-0837.2016.60949
引用本文: 肖振, 赵琪, 张川芳, 王小丽, 王全华, 戴绍军. 蛋白质组学研究揭示的甘蓝型油菜非生物胁迫应答机制[J]. 植物科学学报, 2016, 34(6): 949-961. DOI: 10.11913/PSJ.2095-0837.2016.60949
XIAO Zhen, ZHAO Qi, ZHANG Chuan-Fang, WANG Xiao-Li, WANG Quan-Hua, DAI Shao-Jun. Abiotic Stress Response Mechanism of Oilseed Rape (Brassica napus L.) Revealed from Proteomics[J]. Plant Science Journal, 2016, 34(6): 949-961. DOI: 10.11913/PSJ.2095-0837.2016.60949
Citation: XIAO Zhen, ZHAO Qi, ZHANG Chuan-Fang, WANG Xiao-Li, WANG Quan-Hua, DAI Shao-Jun. Abiotic Stress Response Mechanism of Oilseed Rape (Brassica napus L.) Revealed from Proteomics[J]. Plant Science Journal, 2016, 34(6): 949-961. DOI: 10.11913/PSJ.2095-0837.2016.60949

蛋白质组学研究揭示的甘蓝型油菜非生物胁迫应答机制

基金项目: 

上海市科委地方院校能力建设项目(14390502700);上海高校青年教师培养资助计划(2014);上海师范大学一般科研项目(SK201419)。

详细信息
    作者简介:

    肖振(1990-),男,硕士研究生,研究方向为植物逆境应答蛋白质组学(E-mail:1099167757@qq.com)。

    通讯作者:

    戴绍军,E-mail:daishaojun@hotmail.com。

  • 中图分类号: Q945.78

Abiotic Stress Response Mechanism of Oilseed Rape (Brassica napus L.) Revealed from Proteomics

Funds: 

This work was supported by grants from the Ability Construction Projects of Local Universities of Shanghai Science, Funding Program for Young Teachers at Universities and Colleges of Shanghai, and General Scientific Research Project of Shanghai Normal University.

  • 摘要: 油菜(Brassica napus L.)是我国的主要油料作物之一,在生长发育过程中经常受到干旱、高温、高盐和营养缺乏等非生物胁迫。这些胁迫通常会阻碍油菜的生长发育,导致品质和产量下降。近年来,快速发展的高通量蛋白质组学技术为揭示油菜胁迫响应分子机制提供了新线索。本文综合分析了油菜不同组织/器官(如:叶片、根、下胚轴和种子)在响应盐、高温、干旱、草酸和缺素(磷、硫和硼)等逆境过程中675种蛋白质的丰度变化特征,揭示了其胁迫应答机制,主要包括:(1)通过G蛋白介导的信号通路感知与传递胁迫信号;(2)通过改变参与糖类与能量代谢相关酶的丰度调节代谢水平;(3)通过叶绿素合成的变化调节光合作用;(4)调节转录因子、蛋白质合成与命运相关蛋白质的丰度,从而在转录、翻译以及翻译后修饰等水平上应答逆境;(5)通过调节膜联蛋白、V型H+-ATP酶等质膜蛋白质,促进细胞内物质吸收与转运;(6)通过细胞骨架动态重塑保持正常细胞结构;(7)利用调节抗氧化酶系统清除活性氧,并通过合成多种防御物质减轻细胞受到的伤害。本综述为解析油菜逆境应答网络体系中的关键调控及代谢通路的变化提供了重要信息。
    Abstract: Oilseed rape (Brassica napus L.) is one of the main oil crops in China. These plants can suffer from various abiotic stresses, such as drought, high temperature, salinity, and nutrient deficiency, which can significantly impact their growth, quality, and yield. In recent years, high-throughput proteomic investigations have provided new clues for understanding the molecular stress response mechanisms in oilseed rape. In this paper, the diverse patterns of 675 stress response proteins in different oilseed rape tissues/organs (e.g., leaves, roots, hypocotyls, and seeds) were analyzed in response to several environmental stresses (i.e.,salt, high temperature, drought, oxalic acid, and nutrient deficiency). They include:(i) perception and transmission of the stress signal by G proteins; (ii) alterations in the abundance of key enzymes involved in carbohydrate and energy metabolism; (iii) alterations in the abundance of chlorophyll synthesis enzymes to regulate photosynthesis; (iv) diverse proteins changed and interaction patterns regulated at the transcriptional, translational, and post translational levels; (v) regulating the plasma membrane proteins (e.g. annexin and V-H+-ATPase) to promote the absorption and transport of intracellular substances; (vi) remodeling of the cytoskeleton to maintain cell structure and function; (vii) detoxification of reactive oxygen species by antioxidant enzymes and antioxidants. This study provides important information for understanding the regulatory and metabolic pathways in oilseed rape in response to abiotic stresses.
  • [1] 李东霞, 石桃雄, 袁盼, 冯燕妮, 石磊. 甘蓝型油菜根系突变体lrn1、prl1和野生型根系显微结构的差异[J]. 植物科学学报, 2014, 32(4):406-412.

    Li DX, Shi TX, Yuan P, Feng YN, Shi L. Differences in root microscopic structure of root mutantslrn1, prl1 and wild type in oilseed rape (Brassica napus L.)[J]. Plant Science Journal, 2014, 32(4):406-412.

    [2] 金美芳, 朱晓清. NaCl胁迫对油菜种子萌发和幼苗生长的影响[J]. 种子, 2009, 28(9):76-79.

    Jin MF, Zhu XQ. Effects of NaCl stress on seed germination and seedling growth of Brassica rapa[J]. Seed, 2009, 28(9):76-79.

    [3] 刘国红, 姜超强, 刘兆普, 梁明祥, 殷祥贞, 郑青松. 盐胁迫对油菜幼苗生长和光合特征的影响[J]. 生态与农村环境学报, 2012, 28(2):157-164.

    Liu GH, Jiang CQ, Liu ZP, Liang MX, Yin XZ, Zheng QS. Effects of salt Stress on growth and photosynthetic traits of canola seedlings[J]. Journal of Ecology and Rural Environment, 2012, 28(2):157-164.

    [4] 朱宗河, 郑文寅, 张学昆. 甘蓝型油菜耐旱相关性状的主成分分析及综合评价[J]. 中国农业科学, 2011, 44(9):1775-1787.

    Zhu ZH, Zheng WY, Zhang XK. Principal component analysis and comprehensive evaluation on morphological and agronomic traits of drought tolerance in rapeseed(Brassica napus L.)[J]. Scientia Agricultura Sinica, 2011, 44(9):1775-1787.

    [5] 范志强. 低温胁迫下外源水杨酸对油菜叶片生理活性的影响[J]. 安徽农学通报, 2009, 15(24):17. Fan ZQ. Effects of salicylic acid on physiological activity of Brassica napus leaves under low-temperature stress[J]. Anhui Agricultural Science Bulletin, 2009, 15(24):17.
    [6] 徐进, 魏嵬, 韩璐, 官子楸, 郑宏春, 柴团耀. 重金属对油菜种子萌发和胚根生长的影响[J]. 西北植物学报, 2007, 27(11):2263-2268.

    Xu J, Wei W, Han L, Guan ZQ, Zheng HC, Chai TY. Effects of heavy metal ions on seeds germination and radicle growth of Brassica napus[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(11):2263-2268.

    [7]

    Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J]. Science, 2014, 345(6199):950-953.

    [8] 张恒, 郑宝江, 宋保华, 王思宁, 戴绍军. 植物盐胁迫应答蛋白质组学分析[J]. 生态学报, 2011, 31(22):6936-6946.

    Zhang H, Zheng BJ, Song BH, Wang SN, Dai SJ. Salt-responsive proteomics in plants[J]. Acta Ecologica Sinica, 2011, 31(22):6936-6946.

    [9]

    Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S. Comparative proteomic analysis of canola leaves under salinity stress[J]. Proteomics, 2011, 11(10):1965-1975.

    [10]

    Yıldız M, Akçalı N, Terzi H. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid[J]. J Plant Physiol, 2015, 179:90-99.

    [11]

    Ismaili A, Salavati A, Mohammadi PP. A comparative proteomic analysis of responses to high temperature stress in hypocotyl of canola (Brassica napus L.)[J]. Protein Peptide Lett, 2015, 22(3):285-299.

    [12]

    Mohammadi PP, Moieni A, Komatsu S. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress[J]. Amino Acids, 2012, 43(5):2137-2152.

    [13]

    Liang Y, Strelkov SE, Kav NNV. Oxalic acid-mediated stress responses in Brassica napus L.[J]. Proteomics, 2009, 9(11):3156-3173.

    [14]

    Yao Y, Sun H, Xu FS, Zhang XJ, Liu SY. Comparative proteome analysis of metabolic changes by low phospho-rus stress in two Brassica napus genotypes[J]. Planta, 2011, 233(3):523-537.

    [15]

    Chen S, Ding GD, Wang ZH, Cai HM, Xu FS. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress[J]. J Proteomics, 2015, 117:106-119.

    [16]

    D'Hooghe P, Escamez S, Trouverie J, Avice JC. Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms[J]. BMC Plant Biol, 2013, 13(1):23.

    [17]

    D'Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice JC, Trouverie J. Evidence for proteomic and metabolic adaptations associated to alterations of seed yield and quality in sulphur-limited Brassica napus L.[J]. Mol Cell Proteomics, 2014, 13:1165-1183.

    [18]

    Wang ZF, Wang ZH, Shi L, Wang LJ, Xu FS. Proteomic alterations of Brassica napus root in response to boron deficienc[J]. Plant Mol Biol, 2010, 74(3):265-278.

    [19]

    Yang ZB. Small GTPases:versatile signaling switches in plants[J]. Plant Cell, 2002, 14(Suppl):S375-S388.

    [20]

    Sang Y, Zheng SQ, Li WQ, Huang BR, Wang XM. Regulation of plant water loss by manipulating the expression of phospholipase Dα[J]. Plant J, 2001, 28(2):135-144.

    [21]

    Roberts MR, Salinas J, Collinge DB. 14-3-3 proteins and the response to abiotic and biotic stress[J]. Plant Mol Biol, 2002, 50(6):1031-1039.

    [22]

    Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB. Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain[J]. J Cereal Sci, 2009, 49(1):12-23.

    [23]

    Yang F, Jensen JD, Svensson B, Jørgensen HJ, Collinge DB, Finnie C. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett[J]. Proteomics, 2010, 10(21):3748-3755.

    [24]

    Liu K, Li L, Luan S. An essential function of phosphatidylinositol phosphates in activation of plant shaker-type K+ channels[J]. Plant J, 2005, 42(3):433-443.

    [25]

    Kato M, Nagasaki-Takeuchi N, Ide Y, Tomioka R, Maeshima M. PCaPs, possible regulators of PtdInsP signals on plasma membrane[J]. Plant Signal Behav, 2010, 5(7):848-850.

    [26]

    Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function:how and why[J]. Annu Rev Biophys, 2008, 37:175.

    [27]

    Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS. Sugar input, metabolism, and signaling mediated by invertase:roles in development, yield potential, and response to drought and heat[J]. Mol Plant, 2010, 3(6):942-955.

    [28] 李超, 林茂, 肖华贵, 杨斌, 饶勇. 硼对油菜生长发育的影响[J]. 中国种业, 2008(S1):14-16.

    Li C, Lin M, Xiao HG, Yang B, Rao Y. Effect of Bn-fertili-zer on rapeseed growth and development[J]. China Seed Industry, 2008(S1):14-16.

    [29] 张耀文, 李殿荣. 油菜硫营养及其与品质的关系[J]. 中国土壤与肥料, 2002(5):3-7.

    Zhang YW, Li DR. The sulfur nutrition and the relationship between sulfur nutrition and quality of rape oil[J]. Soils and Fertilizers, 2002(5):3-7.

    [30] 王庆仁. 硫肥对双低油菜产量与品质的影响[J]. 植物营养与肥料学报, 1997(1):53-57.

    Wang QR. Effect of sulfur application on yield and quality of canola double low oilseed rape[J]. Plant Nutrition and Fertilizer Science, 1997(1):53-57.

    [31] 袁兆国. 低磷胁迫对双低油菜产量与品质的影响[D]. 扬州:扬州大学, 2007. Yuan ZG. Responses of yield and quality to low-P stress and fertilizer application in a double-low oilseed rape[D]. Yangzhou:Yangzhou University, 2007.
    [32] 伊淑丽, 梁颖, 代柳亭, 谌利, 柴友荣, 李加纳. 高温对甘蓝型油菜籽粒后熟相关特性的影响[J]. 西南大学学报:自然科学版, 2008, 30(2):48-50.

    Yi SL, Liang Y, Dai LT, Chen L, Chai YR, Li JN. Effects of high temperature on post-harvest ripening-related characteristics in Brassica napus L.[J]. Journal of Southwest University:Natural Science Edition, 2008, 30(2):48-50.

    [33]

    Kruger NJ, von Schaewen A. The oxidative pentose phosphate pathway:structure and organisation[J]. Curr Opin Plant Biol, 2003, 6(3):236-246.

    [34]

    Ahn IP, Kim S, Lee YH. Vitamin B1 functions as an activator of plant disease resistance[J]. Plant Physiol, 2005, 138(3):1505-1515.

    [35] 马梅, 刘冉, 郑春芳, 刘伟成, 尹晓明, 刘金隆, 王长海, 郑青松. 油菜素内酯对盐渍下油菜幼苗生长的调控效应及其生理机制[J]. 生态学报, 2015, 35(6):1837-1844.

    Ma M, Liu R, Zheng CF, Liu WC, Yin XM, Liu JL, Wang CH, Zheng QS. Regulation of exogenous brassino steroid on growth of salt-stressed canola seedlings and its physiological mechanism[J]. Acta Ecologica Sinica, 2015, 35(6):1837-1844.

    [36]

    Grant CA. The fertilizer requirement of canola production[J]. Sci Food Agric, 1993,61(4):385-387.

    [37]

    Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ. Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis[J]. Plant Physiol, 2002, 128(2):770-779.

    [38]

    Pandey A, Chakraborty S, Datta A, Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.)[J]. Mol Cell Proteomics, 2008, 7(1):88-107.

    [39]

    Vogel J, Hübschmann T, Börner T, Hess WR. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids:support for MatK as an essential splice factor 1[J]. J Mol Biol, 1997, 270(2):179-187.

    [40]

    Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci, 2006, 103(35):12987-12992.

    [41]

    Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Mol Biol, 2007, 63(2):289-305.

    [42]

    Fujii S, Small I. The evolution of RNA editing and pentatricopeptide repeat genes[J]. New Phytol, 2011, 191(191):37-47.

    [43]

    Hollender C, Liu Z. Histone deacetylase genes in Arabidopsis development[J]. J Integr Plant Biol, 2008, 50(7):875-885.

    [44]

    Fedoroff NV. RNA-binding proteins in plants:the tip of an iceberg?[J]. Curr Opin Plant Biol, 2002, 5(5):452-459.

    [45]

    Fusaro AF, Bocca SN, Ramos RL, Barrôco RM, Magioli C, Jorge VC, Coutinho TC, Rangel-Lima CM, De Rycke R, Inzé D, Engler G, Sachetto-Martins G. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development[J]. Planta, 2007, 225(6):1339-51.

    [46]

    Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress[J]. Plant Physiol, 2004, 134(4):1683-1696.

    [47]

    Mittler R. Abiotic stress, the field environment and stress combination[J]. Trends Plant Sci, 2006, 11(1):15-19.

    [48]

    Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D, Fiucci G, Goud B, Mirande M, Amson R, Telerman A. Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A[J]. Proc Natl Acad Sci, 2003, 100(24):13892-13897.

    [49]

    Naora H, Naora H. Involvement of ribosomal proteins in regulating cell growth and apoptosis:translational modulation or recruitment for extraribosomal activity?[J]. Immunol Cell Biol, 1999, 77(3):197-205.

    [50]

    Szakonyi D, Byrne ME. Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana[J]. Plant J, 2011, 65(2):269-281.

    [51]

    Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins[J]. Annu Rev Genet, 1993, 27(1):437-496.

    [52]

    Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology[J]. Annu Rev Physiol, 1999, 61(1):243-282.

    [53]

    Kregel KC. Invited Review:Heat shock proteins:modifying factors in physiological stress responses and acquired thermo tolerance[J]. J Appl Physiol, 2002, 92(5):2177-2186.

    [54]

    Desai NS, Agarwal AA, Uplap SS. HSP:evolved and conserved proteins, structure and sequence studies[J]. Int J Bioin Res, 2010, 2(2):67-87.

    [55]

    Vierling E. The roles of heat shock proteins in plants[J]. Annu Rev Plant Biol, 1991, 42(1):579-620.

    [56]

    Lindquist S. The heat-shock response[J]. Annu Rev Biochem, 1986, 55(1):1151-1191.

    [57]

    Sabehat A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperatures a possible role in protecting against chilling injuries[J]. Plant Physiol, 1998, 117(2):651-658.

    [58]

    Ferguson DL, Guikema JA, Paulsen GM. Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress[J]. Plant Physiol, 1990, 92(3):740-746.

    [59]

    Haider A, Badr A, Gatehouse J, Hamoud M, Sammour R, Bouter D. Expression of Ubiquitin during late embryogenesis in pea (Pisurn sativum L.)[J]. Plant Physiol, 1995, 108(2):153-153.

    [60]

    Young TE, Ling J, Geisler-Lee CJ, Tanguay RL, Caldwell C, Gallie DR. Developmental and thermal regulation of the maize heat shock protein, HSP101[J]. Plant Physiol, 2001, 127(3):777-791.

    [61]

    Galat A, Metcalfe SM. Peptidylproline cis/trans isomera-ses[J]. Prog Biophys Mol Biol, 1995, 63(1):67-118.

    [62]

    Whittier JE, Xiong Y, Rechsteiner MC, Squier TC. Hsp90 enhances degradation of oxidized calmodulin by the 20S proteasome[J]. J Biol Chem, 2004, 279(44):46135-46142.

    [63]

    Grune T, Jung T, Merker K, Davies KJ. Decreased pro-teolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease[J]. Int J Biochem Cell Biol, 2004, 36(12):2519-2530.

    [64]

    Asher G, Reuven N, Shaul Y. 20S proteasomes and protein degradation "by default"[J]. Bioessays, 2006, 28(8):844-849.

    [65]

    Voss P, Grune T. The nuclear proteasome and the degradation of oxidatively damaged proteins[J]. Amino Acids, 2007, 32(4):527-534.

    [66]

    Lingard MJ, Bartel B. Arabidopsis LON2 is necessary for peroxisomal function andsustained matrix protein import[J]. Plant Physiol, 2009, 151(3):1354-1365.

    [67]

    Tsilibaris V, Maenhaut-Michel G, Van Melderen L. Biological roles of the Lon ATP-dependent protease[J]. Res Microbiol, 2006, 157(8):701-713.

    [68]

    Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis[J]. Plant Cell, 2004, 16(6):1378-1391.

    [69]

    Davies JM. Vacuolar energization:pumps, shunts and stress[J]. J Exp Bot, 1997, 48(3):633-641.

    [70]

    Huber F, Schnauss J, Rönicke S, Rauch P, Müller K, Fütterer C, Käs J. Emergent complexity of the cytoskeleton:from single filaments to tissue[J]. Adv Phys, 2013, 62(1):1-112.

    [71]

    Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants[J]. Plant Cell, 1999, 11(3):431-443.

    [72]

    Ort DR, Baker NR. A photoprotective role for O2 as an alternative electron sink in photosynthesis?[J]. Curr Opin Plant Biol, 2002, 5(3):193-198.

    [73]

    Imlay JA. Pathways of oxidative damage[J]. Annu Rev Microbiol, 2003, 57(1):395-418.

    [74]

    Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review[J]. Ecotox Environ Safe, 2005, 60(3):324-349.

    [75] 娜荷雅. 高温对油菜、燕麦和大豆种子生理代谢及衰老的影响[D]. 呼和浩特:内蒙古农业大学, 2008.

    Na HY. Effect of heat stress on the physiology and aging of three seeds[D]. Hohhot:Inner Mongolia Agricultural University, 2008.

    [76] 李玉琴, 赵丹丹, 余永芳, 牛银银, 杨冬之, 臧新. 磷胁迫对油菜幼苗Apase·POD·CAT活性的影响[J]. 安徽农业科学, 2011, 39(16):9548-9550.

    Li YQ, Zhao DD, Yu YF, Niu YY, Yang DZ, Zang X. Effect of P stress on Apase, POD and CAT activities of rapeseed seedlings[J]. Journal of Anhui Agricultural Sciences, 2011, 39(16):9548-9550.

    [77]

    Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. J Exp Bot, 2002, 53(372):1331-1341.

    [78]

    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants[J]. Trends Plant Sci, 2004, 9(10):490-498.

    [79]

    Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell and Environ, 2010, 33(4):453-467.

    [80]

    Kristensen BK, Bloch H, Rasmussen SK. Barley coleoptile peroxidases. Purification, molecular cloning, and induction by pathogens[J]. Plant Physiol, 1999, 120(2):501-512.

    [81]

    Passardi F, Penel C, Dunand C. Performing the paradoxical:how plant peroxidases modify the cell wall[J]. Trends Plant Sci, 2004, 9(11):534-540.

    [82]

    Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ. Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis[J]. Plant Physiol, 2003, 131(1):317-325.

    [83]

    Noctor G, Gomez L, Vanacker H, Foyer CH. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling[J]. J Exp Bot, 2002, 53(372):1283-1304.

    [84]

    Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes[J]. J Exp Bot, 2002, 53(372):1305-1319.

    [85]

    Foyer CH, Noctor G. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant Cell Environ, 2005, 28(8):1056-1071.

    [86]

    Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases[J]. Genome Biol, 2002, 3(3):3004.1-3004.10.

    [87]

    Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities[J]. Nat Struct Biol, 2000, 7(11):1036-1040.

    [88]

    Lönnerdal B, Janson JC. Studies on myrosinases.Ⅱ[STXFZ]. Purification and characterization of a myrosinase from rapeseed (Brassica napus L.)[J]. BBA-Enzymol, 1973, 315(2):421-429.

    [89]

    Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S. β-Glucosidases as detonators of plant chemical defense[J]. Phytochemistry, 2008, 69(9):1795-1813.

    [90]

    Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Masuda T, Shimada H, Takamiya K, Tabata S, Ohta H. Genome-wide expression-monitoring of jasmonate-responsive genes of Arabidopsis using cDNA arrays[J]. Biochem Soc Trans, 2000, 28(6):863-864.

    [91]

    Wasternack C, Hause B. Jasmonates and octadecanoids:signals in plant stress responses and development[J]. Prog Nucleic Acid Res Mol Biol, 2002, 72:165-221.

    [92]

    Desclos M, Dubousset L, Etienne P, Le Caherec F, Satoh H, Bonnefoy J, Ourry A, Avice JC. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions[J]. Plant Physiol, 2008, 147(4):1830-1844.

    [93]

    Etienne P, Desclos M, Le Gou L, Gombert J, Bonnefoy J, Maurel K, Le Dily F, Ourry A, Avice JC. N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity[J]. Funct Plant Biol, 2007, 34(10):895-906.

    [94]

    Damaraju S, Schlede S, Eckhardt U, Lokstein H, Grimm B. Functions of the water soluble chlorophyll-binding protein in plants[J]. J Plant Physiol, 2011, 168(12):1444-1451.

    [95]

    Takahashi S, Yanai H, Nakamaru Y, Uchida A, Nakayama K, Satoh H. Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble Chl-binding protein from brussels sprouts (Brassica oleracea var. gemmifera)[J]. Plant Cell Physiol, 2012, 53(5):879-891.

    [96]

    Rey P, Pruvot G, Becuwe N, Eymery F, Rumeau D, Pel-tier G. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants[J]. Plant J, 1998, 13(1):97-108.

    [97]

    Gillet B, Beyly A, Peltier G, Rey P. Molecular characte-rization of CDSP 34 a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants and regulation of CDSP 34 expression by ABA and high illumination[J]. Plant J, 1998, 16(2):257-262.

计量
  • 文章访问数:  1271
  • HTML全文浏览量:  2
  • PDF下载量:  1368
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-05
  • 修回日期:  2016-04-21
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-12-27

目录

    /

    返回文章
    返回