Effects of Manganese Contamination on the Growth, Mn Accumulation and Antioxidants of Polygonum lapathifolium Linn.
-
摘要: 采用土培方法,研究了广西某锰矿区未开采区、探矿区、恢复区、开采区和尾矿坝的土壤对酸模叶蓼(Polygonum lapathifolium Linn.)的生长、Mn吸收及抗氧化酶系统的影响。结果表明,酸模叶蓼的根、茎、叶中Mn含量随着土壤Mn浓度的增加而增加,Mn含量依次为根 < 茎 < 叶;尾矿坝土壤中(T6处理),叶片Mn含量达到最大值5566.9 mg/kg。锰污染显著提高了酸模叶蓼叶片中H2O2和MDA的含量,但锰污染对酸模叶蓼的生物量无显著影响。锰污染土壤显著降低了酸模叶蓼叶片中SOD、POD、APX和AsA等抗氧化物的活性,而CAT的活性则呈先上升后下降的趋势,表明Mn污染促使酸模叶蓼启动了抗氧化酶系统;Mn污染同时显著提高了酸模叶蓼叶片中-SH、GSH和PCs的含量,表明-SH、GSH和PCs在解毒酸模叶蓼Mn毒害的过程中起重要作用。Abstract: The effects of manganese contamination on various enzymatic and non-enzymatic antioxidants in the leaves of Polygonum lapathifolium Linn. were studied. As a newly identified manganese hyperaccumulator, P.lapathifolium was grown in soils with various Mn concentrations for 70 d. Plant leaves were analyzed for activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and contents of ascorbic acid (AsA), glutathione (GSH), phytochelatins (PCs), total acid soluble SH, malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2·-) evolution rate. The results showed that Mn content in the roots, stems, and leaves of P. lapathifolium increased with Mn concentrations in the soil. Both the MDA and H2O2 contents significantly increased with Mn treatment. However, the biomass of P. lapathifolium showed no significant differences compared with that of the control. The activities of SOD, POD, APX and AsA significantly decreased with increasing Mn treatment, which indicated that P. lapathifolium stimulated the antioxidant enzyme system. The contents of GSH, PCs and -SH were significantly higher than those of the control. These results indicate that both enzymatic and non-enzymatic antioxidants play significant roles in Mn detoxification in this plant.
-
-
[1] Shenker M, Plessner OE, Tel-Or E. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity[J]. J Plant Physiol, 2004, 161(2):197-202.
[2] Erikson KM, Aschner M. Manganese neurotoxicity and glutamate-GABA internaction[J]. Neurochem Int, 2003, 43(4):475-480.
[3] Shi QH, Zhu ZJ, XuM, Qian QQ, Yu JQ. Effects of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities[J]. Environ Exp Bot, 2006, 58:197-205.
[4] Fu J M, Huang BR. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress[J]. Environ Exp Bot, 2001, 45(2):105-114.
[5] 潘雪峰, 李明, 赵盼, 唐堃, 董闪, 赵冬. 铜胁迫对穿心莲幼苗生长及生理特性的影响[J]. 植物科学学报, 2015, 33(2):218-225. Pan XF, Li M, Zhao P, Tang K, Dong S, Zhao D. Copper stress effects on the growth and physiological characteristics of Andrographis paniculata seedling[J]. Plant Science Journal, 2015, 33(2):218-225.
[6] 于方明, 汤叶涛, 仇荣亮, 周小勇, 应蓉蓉, 胡鹏杰, 张涛. Cd胁迫下超富集植物圆锥南芥抗氧化机理[J]. 环境科学学报, 2010, 30(2):409-414. Yu FM, Tang YT, Chou RL, Zhou XY, Ying RR, Hu PJ, Zhang T. Antioxidant responses to cadmium stress in the hyperaccumulator Arabis paniculata Franch[J]. Acta Scientiae Environment, 2010, 30(2):409-414.
[7] 薛生国, 陈英旭, 林琦, 徐圣友, 王远鹏. 中国首次发现的Mn超积累植物商陆[J]. 生态学报, 2003, 23(5):935-937. Xue SG, Chen YX, Lin Q, Xu SY, Wang YP. Phytolacca acinosa Roxb. (Phytolaccaceae):A new manganese hyperaccumulator plant from Southern China[J]. Acta Ecologica Sinica, 2003, 23(5):935-937.
[8] Yang SX, Deng H, Li MS. Manganese up take and accumulation in a woody hyperaccumulator, Schima superba[J]. Plant Soil Environ, 2008, 54(10):441-446.
[9] 邓华, 李明顺, 陈英旭. 超富集植物短毛蓼对锰的富集特征[J]. 生态学报, 2009, 29(10):5450-5454. Deng H, Li MS, Chen YX. Accumulating characteristics of manganese by Polygonum pubescens Blume[J]. Acta Ecologica Sinica, 2009, 29(10):5450-5454.
[10] 王华, 唐树海, 廖香俊, 曹启明, 杨安富, 王丁忠. Mn超级累植物——水蓼[J]. 生态环境, 2007, 16(3):830-834. Wang H, Tang SH, Liao XJ, Cao QM, Yang FA, Wang DZ. A new manganese-hyperaccumulator:Polygonum hydropiper L.[J]. Ecology and Environment, 2007, 16(3):830-834.
[11] Liu KH, Yu FM, Chen ML, Zhou ZM, Chen CS, Li MS, Zhu J. A newly found manganese hyperaccumulator-Polygonum lapathifolium Linn.[J]. Int J Phytoremediat, 2016, 18(4):348-353.
[12] Sun RL, Zhou QX, Sun FH, Jin CX. Antioxidative defense and proline/phytochelatin accumulation in a newly disco-vered Cd-hyperaccumulator, Solanum nigrum L.[J]. Environ Exp Bot, 2007, 60:468-476.
[13] Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L.[J]. Plant Physiol Bioch, 2006, 44(1):25-37.
[14] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2007. Li HS. Plant Physiology and Biochemistry Experiments Principle and Technology[M]. Beijing:Higher Education Press, 2007.
[15] Cao XD, Ma QL, Tu C. Antioxidative responses to arsenic in the arsenic hyperaccumulator chinese brake fern(Pteris vittata L.)[J]. Environ Pollut, 2004, 128(3):317-325.
[16] 中国科学院上海植物生理研究所. 现代植物生理学实验指南[M]. 北京:科学出版社, 1999:314-330. Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences. Modern Experiment Guide for Plant Physiology[M]. Beijing:Science Press, 1999:314-330.
[17] 邹琦.植物生理学实验指导[M]. 北京:中国农业出版社,2008. Zhou Q. Experiment Instruction of Plant Physiology[M]. Beijing:China Agricultural Press, 2008. [18] 吴灵琼, 成水平, 杨立华, 吴振斌. Cd2+和Cu2+对美人蕉的氧化胁迫及抗性机理研究[J]. 农业环境科学学报, 2007, 26(4):1365-1369. Wu LQ, Cheng SP, Yang LH, Wu ZB. Stress responses and resistance mechanism of Canna indica Linn. to cad-mium and copper[J]. Journal of Agro-Environment Science, 2007, 26(4):1365-1369.
[19] 张宗申, 利容千, 王建波. 草酸处理对热胁迫下辣椒叶片膜透性和钙分布的影响[J]. 植物生理学报, 2001, 27(2):109-113. Zhang ZS, Li RQ, Wang JB. Effects of oxalate treatment on the membrane permeability and calcium distribution in pepper leaves under heat stress[J]. Plant Physiol Journal, 2001, 27(2):109-113.
[20] 陈贵. 应用羟铵测定植物材料中O2·-的方法[J]. 沈阳农业大学学报, 1998, 29(1):94-95. Chen G. Method of measurement the O2·- in plant material by using hydroxyl ammonium[J]. Journal of Shenyang Agricultural University, 1998, 29(1):94-95.
[21] 鲍士旦.土壤农化分析[M]. 北京:中国农业出版社, 2000. Bao SD. Agricultural Soil Analysis[M]. Beijing:China Agricultural Press, 2000.
[22] Dazy M, Masfaraud JF, Férard JF. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw.[J]. Chemosphere, 2009, 75:297-302.
[23] 苏银萍, 刘华, 于方明, 李艺, 陈孟林, 周振明, 李明顺. Mn污染对木荷叶片抗氧化酶系统的影响[J]. 农业环境科学学报, 2014, 33(4):680-686. Su YP, Liu H, Yu FM, Li Y, Chen ML, Zhou ZM, Li MS. Effects of manganese contamination on activities of antio-xidant enzyme systems in leaves of Schima superb[J]. Journal of Agro-Environment Science, 2014, 33(4):680-686.
[24] 叶攀骅, 王洋, 刘可慧, 周振明, 陈孟林, 刘华, 苏银萍, 于方明. 改良剂对锰超富集植物短毛蓼锰吸收及抗氧化酶系统的影响[J]. 土壤, 2016, 48(1):109-116. Ye PH, Wang Y, Liu KH, Zhou ZM, Chen ML, Liu H, Su YP, Yu FM. Effects of mineral amendment on manganese absorption and antioxidant enzymes activities in hyperaccumulator Polygonum puberscens Blume[J]. Soils, 2016, 48(1):109-116.
[25] 晋松, 吴克, 俞志敏, 杨红, 储玲. 白茅生长及抗氧化酶系统对铜胁迫的生理响应[J].合肥学院学报:自然科学版, 2011, 21(2):77-81. Jin S, Wu K, Yu ZM, Yang H, Chu L. Physiological response of Imperata cylindrica var.mayo seedlings on growth and antioxidant enzyme system under Cu stress[J]. Journal of Hefei University:Natural Science Edition, 2011, 21(2):77-81.
[26] 黄真池, 彭舒, 欧阳乐军, 欧日华, 曾富华. Cu2+、Cd2+、Hg2+对玉米幼苗生长和抗氧化酶活性的影响[J]. 西北农林科技大学学报:自然科学版, 2012, 40(1):37-42. Huang ZC, Peng S, Ouyang LJ, Ou RH, Zeng FH. Effect of Cu2+, Cd2+ and Hg2+ on the antioxidant enzyme activities of maize seedlings[J]. Journal of Northweast A & F University:Natural Science Edition, 2012, 40(1):37-42.
计量
- 文章访问数: 936
- HTML全文浏览量: 0
- PDF下载量: 1349