高级检索+

简易注气法测定刺槐木质部导管组织长度

张玲玲, 王瑞庆

张玲玲, 王瑞庆. 简易注气法测定刺槐木质部导管组织长度[J]. 植物科学学报, 2016, 34(6): 920-925. DOI: 10.11913/PSJ.2095-0837.2016.60920
引用本文: 张玲玲, 王瑞庆. 简易注气法测定刺槐木质部导管组织长度[J]. 植物科学学报, 2016, 34(6): 920-925. DOI: 10.11913/PSJ.2095-0837.2016.60920
ZHANG Ling-Ling, WANG Rui-Qing. Xylem Vessel Length Determination in Robinia pseudoacacia L. by Simplified Air Injection[J]. Plant Science Journal, 2016, 34(6): 920-925. DOI: 10.11913/PSJ.2095-0837.2016.60920
Citation: ZHANG Ling-Ling, WANG Rui-Qing. Xylem Vessel Length Determination in Robinia pseudoacacia L. by Simplified Air Injection[J]. Plant Science Journal, 2016, 34(6): 920-925. DOI: 10.11913/PSJ.2095-0837.2016.60920

简易注气法测定刺槐木质部导管组织长度

基金项目: 

“千人计划”项目(Z111021201);国家自然科学基金项目(31570588)。

详细信息
    作者简介:

    张玲玲(1988-),女,硕士,助理实验师,研究方向为植物水分生理和生物物理(E-mail:zll2013@nwsuaf.edu.cn)。

    通讯作者:

    王瑞庆,E-mail:w_ruiqing@163.com。

  • 中图分类号: Q944

Xylem Vessel Length Determination in Robinia pseudoacacia L. by Simplified Air Injection

Funds: 

This work was supported by grants from the ‘Thousand Talents Program’ (Z111021201) and National Natural Science Foundation of China (31570588).

  • 摘要: 导管组织在木本植物水力学特性及水分关系中的作用逐渐受到关注,但其长度的传统测试装置和方法相对繁琐。本研究在注气法原理基础上进行改进,改进后装置简易、操作便捷。结果表明,本方法可以成功测定刺槐(Robinia pseudoacacia L.)导管的长度及相关参数:气体传导耗散系数为0.111±0.012;最大导管长度为56.9±1.5 cm;平均导管长度为19.6±2.5 cm;最大分布导管长度为9.8±1.3 cm。枝条注气方向对测试结果没有明显影响。测试过程中注气端压强变化不明显,对导管长度及相关参数的测定和计算影响不显著。本方法与传统注气法相比具有更高的精确度。
    Abstract: The role of vessel tissues in the hydraulics and water relationships of woody plants has received increasing attention; however, the traditional devices and methods used for determining their length are relatively cumbersome. We designed a simple device for vessel length assessment based on the principle of gas injection, and simplified the measurement process. Results showed that the designed device successfully assessed the vessel length of Robinia pseudoacacia L. with a dissipation coefficient of 0.111±0.012, maximum vessel length of 56.9±1.5 cm, mean vessel length of 19.6±2.5 cm and mode vessel length of 9.8±1.3 cm. There were no significant differences between the gas injected vessel lengths from either side of the stem. The gas pressure in the injection side did not vary significantly during measurement, and had no influence on the test. The present method was found to be more precise than that of traditional air injection.
  • [1]

    Andrews HN, Arnold C. Studies in Paleobotany[M]. New York:Wiley, 1961:487.

    [2]

    Tyree M, Zimmermann MH. Xylem Structure and the Ascent of Sap[M] 2nd ed. Berlin:Springer-Verlag, 2002:11.

    [3]

    Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW. A global analysis of xylem vessel length in woody plants[J]. Am J Bot, 2012, 99(10):1583-1591.

    [4]

    Cai J, Zhang S, Tyree M T. A computational algorithm addressing how vessel length might depend on vessel diameter[J]. Plant Cell Environ, 2010, 33(7):1234-1238.

    [5]

    Hacke UG, Sperry JS, Wheeler JK, Castro L. Scaling of angiosperm xylem structure with safety and efficiency[J]. Tree Physiol, 2006, 26(6):689-701.

    [6]

    Sperry JS, Hacke UG, Wheeler JK. Comparative analysis of end wall resistivity in xylem conduits[J]. Plant Cell Environ, 2005, 28(4):456-465.

    [7]

    Christman MA, Sperry JS, Adler FR. Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer[J]. New Phytol, 2009, 182(3):664-674.

    [8]

    Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[J]. New Phytol, 2011, 190(3):709-723.

    [9] 张永福, 韩丽, 黄鹤平, 陈泽斌, 任稹, 刘佳妮, 彭声静. 荔枝、龙眼及龙荔的茎解剖结构比较[J]. 植物科学学报, 2014, 32(6):551-560.

    Zhang YF, Han L, Huang HP, Chen ZB, Ren Z, Liu JN, Peng SJ. Comparisons of stem anatomical structures among litchi, longan and longli[J]. Plant Science Journal, 2014, 32(6):551-560.

    [10] 辛桂亮, 郑俊鸣, 叶志勇, 张万超, 邓传远. 秋茄次生木质部的生态解剖学研究[J]. 植物科学学报, 2015, 33(6):792800. Xin GL, Zheng JM, Ye ZY, Zhang WC, Deng CY. Ecolo-gical anatomical characteristics of secondary xylemin Kandelia obovata Sheue et al.[J]. Plant Science Journal, 2015, 33(6):792-800.
    [11]

    Cai J, Tyree MT. Measuring vessel length in vascular plants:can we divine the truth? History, theory, methods, and contrasting models[J]. Trees, 2014, 28(3):643-655.

    [12]

    Zimmermann MH. Dicotyledonous Wood Structure (made apparent by sequential sections)[M]//Wolf G, eds. Encyclopaedia Cinematographica. Göttinge:Institut für den wissenschaftlichen Film, 1971.

    [13]

    Brodersen CR, Lee EF, Choat B, Jansen S, Phillips RJ, Shackel KA, McElrone AJ, Matthews MA. Automated analysis of three-dimensional xylem networks using high-resolution computed tomography[J]. New Phytol, 2011, 191(4):1168-1179.

    [14]

    Pan R, Geng J, Cai J, Tyree MT. A comparison of two methods for measuring vessel length in woody plants[J]. Plant Cell Environ, 2015, 38(12):2519-2526.

    [15]

    Cohen S, Bennink J, Tyree M. Air method measurements of apple vessel length distributions with improved apparatus and theory[J]. J Exp Bot, 2003, 54(389):1889-1897.

    [16]

    Skene D, Balodis V. A study of vessel length in Eucalyptus obliqua L'Herit[J]. J Exp Bot, 1968, 19(4):825-830.

    [17]

    Wang R, Zhang L, Zhang S, Cai J, Tyree MT. Water relations of Robinia pseudoacacia L.:do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia?[J]. Plant Cell Environ, 2014, 37(12):2667-2678.

计量
  • 文章访问数:  1150
  • HTML全文浏览量:  3
  • PDF下载量:  1460
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-04
  • 修回日期:  2016-05-29
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-12-27

目录

    /

    返回文章
    返回