高级检索+

红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响

田尚青, 朱师丹, 朱俊杰, 申智骅, 曹坤芳

田尚青, 朱师丹, 朱俊杰, 申智骅, 曹坤芳. 红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响[J]. 植物科学学报, 2016, 34(6): 909-919. DOI: 10.11913/PSJ.2095-0837.2016.60909
引用本文: 田尚青, 朱师丹, 朱俊杰, 申智骅, 曹坤芳. 红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响[J]. 植物科学学报, 2016, 34(6): 909-919. DOI: 10.11913/PSJ.2095-0837.2016.60909
TIAN Shang-Qing, ZHU Shi-Dan, ZHU Jun-Jie, SHEN Zhi-Hua, CAO Kun-Fang. Impact of Leaf Morphological and Anatomical Traits on Mesophyll Conductance and Leaf Hydraulic Conductance in Mangrove Plants[J]. Plant Science Journal, 2016, 34(6): 909-919. DOI: 10.11913/PSJ.2095-0837.2016.60909
Citation: TIAN Shang-Qing, ZHU Shi-Dan, ZHU Jun-Jie, SHEN Zhi-Hua, CAO Kun-Fang. Impact of Leaf Morphological and Anatomical Traits on Mesophyll Conductance and Leaf Hydraulic Conductance in Mangrove Plants[J]. Plant Science Journal, 2016, 34(6): 909-919. DOI: 10.11913/PSJ.2095-0837.2016.60909

红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响

基金项目: 

广西大学引进杰出人才项目“热带亚热带植物生理生态适应性研究”(XDZ120929)。

详细信息
    作者简介:

    田尚青(1990-),男,硕士研究生,主要研究方向为植物生理生态学(E-mail:tsq082968@sina.com)。

    通讯作者:

    曹坤芳,E-mail:kunfangcao@gxu.edu.cn。

  • 中图分类号: Q944.5

Impact of Leaf Morphological and Anatomical Traits on Mesophyll Conductance and Leaf Hydraulic Conductance in Mangrove Plants

Funds: 

This work was supported by a grant from the Distinguished Scholars Project from Guangxi University:Ecophysiological Adaptation of Tropical and Subtropical Plants (XDZ120929).

  • 摘要: 叶肉导度和叶片导水率是影响光合作用的两个重要过程,叶肉导度通过影响从气孔下腔到Rubisco酶位点的二氧化碳浓度梯度直接影响光合作用,而叶片导水率则通过影响水分供应或气孔行为来影响光合作用,然而对这两个生理过程之间的协同性研究较少。本研究选择9种红树林植物为研究对象,探讨盐生环境下植物叶肉导度和叶片导水率的协同性及其与叶片解剖结构特征之间的相关性。结果表明,9种红树林植物叶片导水率(0.78~5.83 mmol·m-2·s-1·MPa-1)、叶肉导度(0.06~0.36 mol·m-2·s-1)、最大光合速率(7.23~23.71 μmol·m-2·s-1)等特征的差别较大;叶肉导度与最大光合速率呈显著正相关,而与比叶重无显著相关性,其原因是由于比叶重与叶片厚度、叶片密度不存在相关性;叶脉密度与气孔密度呈较强的相关性,说明红树林植物叶片水分运输与散失相关的叶片结构之间存在协同关系;叶片导水率不受叶脉密度影响,并且与叶肉导度、最大光合速率也不存在相关性,这很可能与红树林植物叶片的肉质化、有发达的储水组织有关,体现了红树林植物叶片结构和功能的特殊性。
    Abstract: Mesophyll conductance (gm) and leaf hydraulic conductance (Kleaf) are two important physiological processes that control photosynthesis. However, few studies have investigated the correlations between them. We measured the morphological and anatomical traits of the leaves and the maximum photosynthetic rate (Amax), gm and Kleaf in nine mangrove forest species to explore the correlation between the structural and functional traits of the leaves in these species. Our results showed that there were large variations in Kleaf (0.78-5.50 mmol·m-2·s-1·MPa-1), gm (0.06-0.36 mol·m-2·s-1) and Amax (7.23-23.71 μmol·m-2·s-1) across the nine species. Mesophyll conductance was significantly correlated with Amax, but not with leaf mass per area. Among the nine species, stomatal density was correlated with vein density, indicating a balance between leaf-level water transpiration and supply. There was no significant relationship between Kleaf and vein density, nor between Amax and gm. Decoupled coordination between leaf economic and hydraulic traits for plants growing in mangrove forests indicates additional leaf trait such as water storage tissues assisting their leaf carbon assimilation, This study showed the special leaf structural and physiological adaptation of mangrove plants to the stressful habitats.
  • [1]

    Tosens T, Niinemets Ü, Westoby M, Wright IJ. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls:news of a long and winding path[J]. J Exp Bot, 2012, 63(14):5105-5119.

    [2]

    Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Ribas-Carbó M, Tosens T, Vislap V, Niinemets Ü. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species:quantitative limitations and scaling up by models[J]. J Exp Bot, 2013, 64(8):2269-2281.

    [3]

    Muir CD, Hangarter RP, Moyle LC, Davis PA. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae)[J]. Plant Cell Environ, 2014, 37(6):1415-1426.

    [4]

    Niinemets V, Wright IJ, Evans JR. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation[J]. J Exp Bot, 2009, 60(8):2433-2449.

    [5]

    Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR. Influence of leaf dry mass per area, CO2, and irra-diance on mesophyll conductance in sclerophylls[J]. J Exp Bot, 2009, 60(8):2303-2314.

    [6]

    Sack L, Cowan PD, Jaikumar N, Holbrook NM. The ‘hydrology’ of leaves:co-ordination of structure and function in temperate woody species[J]. Plant Cell Environ, 200326(8):1343-1356.

    [7]

    Sack L, Holbrook NM. Leaf hydraulics[J]. Annu Rev Plant Biol, 2006, 57(1):361-381.

    [8]

    Scoffoni C, Rawls M, McKown A, Cochard H, Sack L. Decline of leaf hydraulic conductance with dehydration:relationship to leaf size and venation architecture[J]. Plant Physiol, 2011, 156(2):832-843.

    [9]

    Dong LX, Tingt Y, Tong Z, Yong L, Shao BP, Jian LH. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza[J]. J Exp Bot, 2015, 66(3):741-748.

    [10]

    Caringella MA, Bongers FJ, Sack L. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants[J]. Plant Cell Environ, 2015, 38(12):2735-2746.

    [11]

    Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B. Leaf hydraulic capacity in ferns, conifers and angiosperms:impacts on photosynthetic maxima[J]. New Phytol, 2005, 165(3):839-846.

    [12] 陈燕,刘锴栋,黎海利,徐方宏,钟军弟,成夏岚,袁长春. 5种红树植物的叶片结构及其抗逆性比较[J]. 东北林业大学学报, 2014, 42(7):27-31.

    Chen Y, Liu KD, Li HL, Xu FH, Zhong JD, Cheng XL, Yuan CC. Leaf structures and stress resistance in five mangrove species[J]. Journal of Northeast Forestry University, 2014, 42(7):27-31.

    [13] 陈健辉, 缪绅裕, 黄丽宜, 王厚麟. 海桑和无瓣海桑叶片结构的比较研究[J]. 植物科学学报, 2015, 33(1):1-8.

    Chen JH, Miao SY, Huang LY, Wang HL. Comparative study on the leaf structures of Sonneratia caseolaris and S. apetala[J]. Plant Science Journal, 2015, 33(1):1-8.

    [14]

    Warren CR, Dreyer E. Temperature response of photosynthesis and internal conductance to CO2:results from two independent approaches[J]. J Exp Bot, 2006, 57(12):3057-3067.

    [15]

    Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta BBA, 1989, 990(1):87-92.

    [16]

    Loreto F, Di MG, Tricoli D, Sharkey TD. Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field-grown wheat leaves[J]. Photosynth Res, 1994, 41(3):397-403.

    [17]

    Harley PC, Loreto F, Di MG, Sharkey TD. Theoretical considerations when estimating the mesophyll conduc-tance to CO2 flux by the analysis of the response of photosynthesis to CO2[J]. Plant Physiol, 1992, 98(4):1429-1436.

    [18]

    Laisk A. Kinetics of Photosynthesis and Photorespiration of C3 Plants[M]. Moscow:Nauka Publishing, 1977.

    [19]

    Pons TL, Flexas J, Caemmerer VS, Evans JR, Genty B, Ribas CM, Brugnoli E. Estimating mesophyll conductance to CO2:methodology, potential errors, and recommendations[J]. J Exp Bot, 2009, (60)8:2217-2234.

    [20]

    Flexas J, Díaz EA, Berry JA, Cifre J, Galmés J, Kaldenhoff R, Medrano H, Ribas CM. Analysis of leakage in IRGA's leaf chambers of open gas exchange systems:quantification and its effects in photosynthesis parameterization[J]. J Exp Bot, 2007, 58(6):1533-1543.

    [21] 宋丽清, 胡春梅, 侯喜林, 石雷, 刘立安, 杨景成, 姜闯道. 高粱、紫苏叶脉密度与光合特性的关系[J]. 植物学报, 2015, 50(1):100-106.

    Song LQ, Hu CM, Hou XL, Shi L, Liu LA, Yang JC, Jiang CD. Relationship between photosynthetic characte-ristics and leaf vein density in Sorghum bicolor and Perilla frutescens[J]. Bulletin of Botany, 2015, 50(1):100-106.

    [22]

    McKown AD, Dengler NG. Shifts in leaf vein density through accelerated vein formation in C4 Flaveria (Aste-raceae)[J]. Ann Bot, 2009, 104(6):1085-1098.

    [23]

    Brodribb TJ, Holbrook NM. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits[J]. Plant Physiol, 2003, 132(4):2166-2173.

    [24]

    Richard ES, Gail B. Rapid estimates of relative water content[J]. Plant Physiol, 1974, 53:258-260.

    [25]

    Kröber W, Heklau H, Bruelheide H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits[J]. Plant Biol, 2015, 17(2):373-383.

    [26]

    Cao KF. Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest[J]. Can J Bot, 2000, 78(10):1245-1253.

    [27]

    Evans JR, Kaldenhoff R, Genty B, Terashima I. Resis-tances along the CO2 diffusion pathway inside leaves[J]. J Exp Bot, 2009, 60(8):2235-2248.

    [28]

    Tholen D, Ethier G, Genty B, Pepin S, Zhu XG. Variable mesophyll conductance revisited:theoretical background and experimental implications[J]. Plant Cell Environ, 2012, 35(12):2087-2103.

    [29]

    Weise SE, Carr DJ, Bourke AM, Hanson DT, Swarthout D, Sharkey TD. The arc mutants of Arabidopsis with fewer large chloroplasts have a lower mesophyll conductance[J]. Plant Cell Environ, 2015,124(1):117-126.

    [30]

    Terashima I, Hanba YT, Tholen D, Niinemets U. Leaf functional anatomy in relation to photosynthesis[J]. Plant Physiol, 2011, 155(1):108-116.

    [31] 李勇, 彭少兵, 黄见良, 熊栋梁, 刘茜. 叶肉导度的组成、大小及其对环境因素的响应[J]. 植物生理学报, 2013, 49(11):1143-1154.

    Li Y, Peng SB, Huang JL, Xiong DL, Liu X. Components and magnitude of mesophyll conductance and its responses to environmental variations[J]. Plant Physiology Journal, 2013, 49(11):1143-1154.

    [32]

    Brodribb TJ, Jordan GJ. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J]. New Phytol, 2011, 192(2):437-448.

    [33]

    Sack L, Frole K. Leaf structural diversity is related to hydraulic capacity[J]. Ecology, 2006, 87(2):483-491.

    [34]

    Buckley TN. The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves[J]. Plant Cell Environ, 2015, 1(38):7-22.

    [35]

    Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui MX, Heckwolf M, Lachnit M, Pede N, Priem N, Reinha A, Siegfart S, Urban M, Kaldenhoff R. Aquaporin tetramer composition modifies the function of tobacco aquaporins[J]. J Biol Chem, 2010, 285(41):31253-31260.

    [36]

    Kaldenhoff R, Ribas C, Sans JF, Lovisolo C, Heckwolf M, Uehlein N. Aquaporins and plant water balance[J]. Plant Cell Environ, 2008,31(5):658-66.

    [37]

    Hommel R, Siegwolf R, Saurer M, Farquhar GD, Kayler Z, Ferrio JP, Gessler A. Drought response of mesophyll conductance in forest understory species-impacts on water-use efficiency and interactions with leaf water movement[J]. Physiol Plant, 2014, 152(1):98-114.

    [38]

    Li L, McCormack ML, Ma C, Kong D, Zhang Q, Chen X, Zeng H, Niinemets U, Guo DL. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecol Lett, 2015, 18(9):899-906.

计量
  • 文章访问数:  1557
  • HTML全文浏览量:  10
  • PDF下载量:  1934
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-04
  • 修回日期:  2016-05-09
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-12-27

目录

    /

    返回文章
    返回