高级检索+

过量表达棉花CBF2基因提高转基因拟南芥抗旱耐盐能力

陈芸, 郑勇, 刘霞, 任羽, 马刘峰

陈芸, 郑勇, 刘霞, 任羽, 马刘峰. 过量表达棉花CBF2基因提高转基因拟南芥抗旱耐盐能力[J]. 植物科学学报, 2016, 34(6): 888-900. DOI: 10.11913/PSJ.2095-0837.2016.60888
引用本文: 陈芸, 郑勇, 刘霞, 任羽, 马刘峰. 过量表达棉花CBF2基因提高转基因拟南芥抗旱耐盐能力[J]. 植物科学学报, 2016, 34(6): 888-900. DOI: 10.11913/PSJ.2095-0837.2016.60888
CHEN Yun, ZHEN Yong, LIU Xia, REN Yu, MA Liu-Feng. Overexpression of the Cotton CBF2 Gene Enhances Salt and Drought Tolerance in Arabidopsis thaliana[J]. Plant Science Journal, 2016, 34(6): 888-900. DOI: 10.11913/PSJ.2095-0837.2016.60888
Citation: CHEN Yun, ZHEN Yong, LIU Xia, REN Yu, MA Liu-Feng. Overexpression of the Cotton CBF2 Gene Enhances Salt and Drought Tolerance in Arabidopsis thaliana[J]. Plant Science Journal, 2016, 34(6): 888-900. DOI: 10.11913/PSJ.2095-0837.2016.60888

过量表达棉花CBF2基因提高转基因拟南芥抗旱耐盐能力

基金项目: 

新疆维吾尔自治区高校科研计划科学研究重点项目(XJEDU2014I037);喀什大学高层次人才科研启动经费项目(GCC16ZK-002)。

详细信息
    作者简介:

    陈芸(1980-),女,讲师,研究方向为植物遗传育种(E-mail:chenyun8111@126.com)。

    通讯作者:

    马刘峰,E-mail:maliufeng@126.com。

  • 中图分类号: Q78

Overexpression of the Cotton CBF2 Gene Enhances Salt and Drought Tolerance in Arabidopsis thaliana

Funds: 

This work was supported by grants from the Scientific Research Program of the Higher Education Institution of Xin Jiang (Grant No. XJEDU2014I037) and the Starting Fund for High-Scientific Study of Genius of Kashgar University (GCC16ZK-002).

  • 摘要: CBF/DREB是一类植物中特有的转录因子,在植物抵抗逆境胁迫过程中发挥重要功能。本研究从陆地棉(Gossypium hirsutum L.)Coker 312中克隆获得1个棉花CBF/DREB基因,命名为GhCBF2,该基因编码一个由216个氨基酸组成的CBF蛋白。序列分析结果显示,GhCBF2与其他植物的CBF蛋白类似,含有AP2转录因子典型的保守结构域。干旱或高盐胁迫处理明显增加了GhCBF2基因的表达量。亚细胞定位分析结果发现GhCBF2定位在细胞核中。将GhCBF2基因构建到由35S启动子调控的植物表达载体pMD上并转化拟南芥(Arabidopsis thaliana L.),结果表明,在干旱和盐胁迫条件下,过量表达GhCBF2基因拟南芥的成活率显著高于野生型,并且游离脯氨酸和可溶性糖含量也高于野生型,说明转GhCBF2基因提高了拟南芥的耐盐抗旱能力。采用实时荧光定量PCR方法分析胁迫相关标记基因COR15A、RD29AERD6的表达情况,结果显示转基因株系中的表达量显著高于野生型,说明GhCBF2参与调控拟南芥干旱和盐胁迫相关基因的表达。
    Abstract: CBF/DREB proteins are transcription factors in plants, which play important biological functions in cold, drought, and salt stress resistance. In this study, a CBF/DREB gene, GhCBF2, was cloned from Gossypium hirsutum L., coding a protein consisting of 216 amino acids. Sequence analysis indicated that GhCBF2 contained a typical AP2 conservative domain structure, much like the CBF proteins in other plant species. The transcript of the GhCBF2 gene in cotton seedlings was upregulated following exposure to drought and salt stress. Subcellular localization of proteins showed that the GhCBF2-GFP fusion protein was localized to the nucleus. To study the function of the GhCBF2 gene in drought and salt stress resistance, it was inserted into pMD to construct a GhCBF2-overexpression vector under the control of CaMV 35S promoter. The construct was introduced into Arabidopsis thaliana by the floral dip method. Analysis of resistance to drought and salt stress showed that the survival rate of transgenic A. thaliana plants was improved remarkably compared to that of the wildtype (WT) plants. The proline and soluble sugar contents in the transgenic plants were also higher than those in the WT plants. These results show that GhCBF2 can enhance transgenic plant tolerance to drought and salt stress. We selected several stress related genes, including COR15A, RD29A, and ERD6, and examined their expression by quantitative RT-PCR in both transgenic and WT plants. Remarkably, the expressions of these marker genes in GhCBF2-overexpressed transgenic plants were substantially higher than those in WT plants, indicating that the GhCBF2 gene is involved in the regulation of drought and salt related genes.
  • [1]

    Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK. DREB1/CBF transcription factors:their structure, function and role in abiotic stress tolerance in plants[J]. J Genet, 2012, 91(3):385-395.

    [2]

    Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10):573-581.

    [3]

    Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses[J]. Biochim Biophys Acta, 2012, 1819(2):86-96.

    [4]

    Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ. WRKY transcription factors:key components in abscisic acid signalling[J]. Plant Biotechnol J, 2012, 10(1):2-11.

    [5]

    Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana[STXFX]CBF1[STXFZ] encodes an AP2 domain-containing tran-scription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997, 94(3):1035-1040.

    [6]

    Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3):998-1009.

    [7]

    Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol, 2002, 130(2):639-648.

    [8]

    Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C, Liu Y, Zong JM, Li HY. Dwarf apple [STXFX]MbDREB1[STXFZ] enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways[J]. Planta, 2011, 233(2):219-229.

    [9]

    Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochem Biophys Res Commun, 2007, 353(2):299-305.

    [10]

    Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J]. Curr Opin, 2000, 3(3):217-223.

    [11]

    Lee YP, Fleming AJ, Körner C, Meins FJ. Differential expression of the CBF pathway and cell cycle-related genes in Arabidopsis accessions in response to chronic low-temperature exposure[J]. Plant Biol (Stuttg), 2009, 11(3):273-283.

    [12]

    Kim SY, Nam KH. Physiological roles of [STXFX]ERD10[STXFZ] in abiotic stresses and seed germination of Arabidopsis[J]. Plant Cell Rep, 2010, 29(2):203-209.

    [13]

    Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transpor-ter[J]. Biochim Biophys Acta, 1998, 1370(2):187-191.

    [14]

    Li XJ, Li M, Zhou Y, Hu S, Hu R, Chen Y, Li XB. Overexpression of cotton [STXFX]RAV1[STXFZ] gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity[J]. PLoS One, 2015, 10(2):e0118056.

    [15]

    Chen T, Li W, Hu X, Guo J, Liu A, Zhang B. A Cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress[J]. Plant Cell Physiol, 2015, 56(5):917-929.

    [16]

    Ma LF, Zhang JM, Huang GQ, Li Y, Li XB, Zheng Y. Molecular characterization of cotton C-repeat/dehydration-responsive element binding factor genes that are involved in response to cold stress[J]. Mol Biol Rep, 2014, 41(7):4369-4379.

    [17]

    Ma LF, Li Y, Chen Y, Li XB. Improved drought and salt tolerance of Arabidopsis thaliana by ectopic expression of a cotton (Gossypium hirsutum) CBF gene[J]. Plant Cell Tiss Organ Cult, 2016, 124:583-598.

    [18]

    Clough SJ, Bent AF. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16:735-743.

    [19]

    Sperdouli I, Moustakas M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress[J]. J Plant Physiol, 2012, 169(6):577-585.

    [20]

    Wu LH, Zhou MQ, Shen C, Liang J, Lin J. Transgenic tobacco plants over expressing cold regulated protein CbCOR15b from Capsella bursa-pastoris exhibit enhanced cold tolerance[J]. J Plant Physiol, 2012, 169(14):1408-1416.

    [21]

    Chen L,Wang QQ, Zhou L, Ren F, Li DD, Li XB. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA[J]. Mol Biol Rep, 2013, 40(8):4759-4767.

    [22]

    Qin LX, Li Y, Li DD, Xu WL, Zheng Y, Li XB. Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses[J]. Plant Mol Biol, 2014, 86(6):609-625.

    [23]

    Qin LX, Li Y, Li DD, Xu WL, Zheng Y, Li XB. Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses. Plant Mol Biol, 2014, 86(6):609-625.

    [24]

    Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep, 2006, 25(12):1263-1274.

    [25]

    Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network[J]. Plant J, 2015, 82(2):193-207.

    [26]

    Zhou MQ, Shen C, Wu LH, Tang KX, Lin J. CBF-dependent signaling pathway:a key responder to low temperature stress in plants[J]. Crit Rev Biotechnol, 2011, 31(2):186-189.

    [27]

    Zandkarimi H, Ebadi A, Salami SA, Alizade H, Baisakh N. Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in Grape (Vitis vinifera L.)[J]. PLoS One, 2015, 10(7):e0134288.

    [28]

    Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression[J]. Plant J, 2015, 81(3):505-518.

    [29]

    Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY, Yu XD, Liu P, Ma YZ. Isolation and functional characterization of[STXFX]HvDREB1-a[STXFZ] gene encoding a dehydration-responsive element binding protein in Hordeum vulgare[J]. J Plant Res, 2009, 122(1):121-130.

    [30]

    Prelich G. Gene overexpression:uses, mechanisms, and interpretation[J]. Genetics, 2012, 190(3):841-854.

    [31]

    Lodeyro AF, Ceccoli RD, Pierella Karlusich JJ, Carrillo N. The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnological potential[J]. FEBS Lett, 2012, 586(18):2917-2924.

    [32]

    Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD. Roles of melatonin in abiotic stress resistance in plants[J]. J Exp Bot, 2015, 66(3):647-656.

    [33]

    Sengar RS, Gautam M, Sengar RS, Garg SK, Sengar K, Chaudhary R. Lead stress effects on physiobiochemical activities of higher plants[J]. Rev Environ Contam Toxicol, 2008, 196:73-93.

    [34]

    Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R. Overexpression of StDREB1 transcription factor increases tole-rance to salt in transgenic potato plants[J]. Mol Biotech-nol, 2013, 54(3):803-817.

    [35]

    Hwang JE, Lim CJ, Chen H, JJ, Song C, Lim CO. Overexpression of Arabidopsis dehydration-responsive element-binding protein 2C confers tolerance to oxidative stress[J]. Mol Cells, 2012, 33(2):135-140.

    [36]

    Golldack D, Lüking I, Yang O. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Rep, 2011, 30(8):1383-1391.

计量
  • 文章访问数:  1541
  • HTML全文浏览量:  9
  • PDF下载量:  1628
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-04
  • 修回日期:  2016-05-29
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-12-27

目录

    /

    返回文章
    返回