高级检索+

水杨酸诱发的NO介导了丹参悬浮培养细胞中丹酚酸B的生物合成

张婧一, 陈红艳, 张洪培, 朱楠, 董娟娥

张婧一, 陈红艳, 张洪培, 朱楠, 董娟娥. 水杨酸诱发的NO介导了丹参悬浮培养细胞中丹酚酸B的生物合成[J]. 植物科学学报, 2015, 33(1): 81-89. DOI: 10.11913/PSJ.2095-0837.2015.10081
引用本文: 张婧一, 陈红艳, 张洪培, 朱楠, 董娟娥. 水杨酸诱发的NO介导了丹参悬浮培养细胞中丹酚酸B的生物合成[J]. 植物科学学报, 2015, 33(1): 81-89. DOI: 10.11913/PSJ.2095-0837.2015.10081
ZHANG Jing-Yi, CHEN Hong-Yan, ZHANG Hong-Pei, ZHU Nan, DONG Juan-E. Nitric Oxide Triggered by Salicylic Acid Mediates the Biosynthesis of Salvianolic Acid B in Salvia miltiorrhiza Suspension Cell Culture[J]. Plant Science Journal, 2015, 33(1): 81-89. DOI: 10.11913/PSJ.2095-0837.2015.10081
Citation: ZHANG Jing-Yi, CHEN Hong-Yan, ZHANG Hong-Pei, ZHU Nan, DONG Juan-E. Nitric Oxide Triggered by Salicylic Acid Mediates the Biosynthesis of Salvianolic Acid B in Salvia miltiorrhiza Suspension Cell Culture[J]. Plant Science Journal, 2015, 33(1): 81-89. DOI: 10.11913/PSJ.2095-0837.2015.10081
张婧一, 陈红艳, 张洪培, 朱楠, 董娟娥. 水杨酸诱发的NO介导了丹参悬浮培养细胞中丹酚酸B的生物合成[J]. 植物科学学报, 2015, 33(1): 81-89. CSTR: 32231.14.PSJ.2095-0837.2015.10081
引用本文: 张婧一, 陈红艳, 张洪培, 朱楠, 董娟娥. 水杨酸诱发的NO介导了丹参悬浮培养细胞中丹酚酸B的生物合成[J]. 植物科学学报, 2015, 33(1): 81-89. CSTR: 32231.14.PSJ.2095-0837.2015.10081
ZHANG Jing-Yi, CHEN Hong-Yan, ZHANG Hong-Pei, ZHU Nan, DONG Juan-E. Nitric Oxide Triggered by Salicylic Acid Mediates the Biosynthesis of Salvianolic Acid B in Salvia miltiorrhiza Suspension Cell Culture[J]. Plant Science Journal, 2015, 33(1): 81-89. CSTR: 32231.14.PSJ.2095-0837.2015.10081
Citation: ZHANG Jing-Yi, CHEN Hong-Yan, ZHANG Hong-Pei, ZHU Nan, DONG Juan-E. Nitric Oxide Triggered by Salicylic Acid Mediates the Biosynthesis of Salvianolic Acid B in Salvia miltiorrhiza Suspension Cell Culture[J]. Plant Science Journal, 2015, 33(1): 81-89. CSTR: 32231.14.PSJ.2095-0837.2015.10081

水杨酸诱发的NO介导了丹参悬浮培养细胞中丹酚酸B的生物合成

基金项目: 

国家自然科学基金 (31170274)

西北农林科技大学青年骨干支持计划资助。

详细信息
    作者简介:

    张婧一(1983-),女,硕士研究生,研究方向为药用植物学(E-mail: Amber--zhang@hotmail.com)。

    通讯作者:

    董娟娥,E-mail:dzsys@nwsuaf.edu.cn

  • 中图分类号: Q945.78

Nitric Oxide Triggered by Salicylic Acid Mediates the Biosynthesis of Salvianolic Acid B in Salvia miltiorrhiza Suspension Cell Culture

  • 摘要: 水杨酸(SA)可诱导丹参悬浮培养细胞中一氧化氮(NO)产生、苯丙氨酸解氨酶(PAL)活化及丹酚酸B(Sal B)的生物合成。为了阐明NO对丹参悬浮培养细胞中Sal B生物合成的影响及作用机理,本实验利用NO供体硝普钠(SNP)、NO合成酶抑制剂L-NNA(Nω-nitro-L-arginine)、NO淬灭剂cPITO (carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)以及PAL抑制剂L-AOPP(L-2-aminooxygen-3-phenyl acrylic acid)分别处理丹参悬浮培养细胞,并对其胞内NO水平、PAL活性和Sal B积累量进行了检测。结果表明,硝普钠(SNP)处理显著促进了NO产生、PAL活性和Sal B的积累,而L-NNA和cPITO抑制上述过程,说明NO诱发PAL活性提高并参与了SA诱导的Sal B生物合成;L-AOPP显著抑制了PAL活性及Sal B积累,却对NO产生没有显著影响,揭示NO位于PAL的上游。这说明SA诱发的NO产生、PAL活化及Sal B合成之间存在因果关系,即NO通过激活PAL触发Sal B生物合成。
    Abstract: Salicylic acid (SA) induced nitric oxide (NO) generation, Phenylalanine ammonia-lyase (PAL) activation, and salvianolic acid B (Sal B) biosynthesis. To determine the role of NO in SA-induced Sal B biosynthesis, the effects of NO donor sodium nitroprusside (SNP), NO synthase inhibitor L-NNA(Nω-nitro-L-arginine), NO scavenger carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO), and PAL inhibitor L-AOPP (L-2-aminooxygen-3-phenyl acrylic acid) on SA-induced NO generation, PAL activation, and Sal B accumulation were studied individually. Pretreatment of the cells with SNP increased SA-induced NO generation, PAL activation and Sal B accumulation, which suggested that NO activated PAL and was involved in SA-induced Sal B biosynthesis. L-AOPP suppressed PAL activity and Sal B accumulation, but did not affect SA-induced NO generation, indicating that NO acted as an upstream signal of PAL. Results indicated that there was a causal relationship between SA-induced NO generation, PAL activation, and Sal B biosynthesis in Salvia miltiorrhiza suspension cell culture. Via activation of PAL, NO mediated the SA-induced Sal B biosynthesis.
  • [1]

    Delledonne M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resis-tance[J]. Nature, 1998, 6693(394):585-588.

    [2]

    Wilson ID, Neill SJ, Hancock JT. Nitric oxide synthesis and signalling in plants[J]. Plant Cell Enviro, 2008, 31(5): 622-631.

    [3]

    Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC. Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development[J]. Plant Physiol, 2008, 147(4): 1936-1946.

    [4]

    Crawford NM. Mechanisms for nitric oxide synthesis in plants[J]. Exp Bot, 2006, 57(3): 471-478.

    [5]

    Wendehenne D, Durner J, Klessig DF. Nitric oxi-de: a new player in plant signalling and defence responses[J]. Curr Opin Plant Biol, 2004, 7(4): 449-455.

    [6]

    Leshem Y, Haramaty E, Iluz D, Malik Z, Sofer Y, Roitman L, Leshem Y. Effect of stress nitric oxide (NO): interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenase acti-vity[J]. Plant Physiol and Bioch, 1997, 35(7): 573-579.

    [7]

    Kopyra M, Stachoń-Wilk M, Gwóźdź EA. Effects of exogenous nitric oxide on the antioxidant capa-city of cadmium-treated soybean cell suspension[J]. Acta Physiol Plant, 2006, 28(6): 525-536.

    [8]

    Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L. Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings[J]. Plant Physiol, 2010, 153(4): 1895-1906.

    [9]

    Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M. Nitric oxide signalling functions in plant-pathogen interactions[J]. Cell Microbiol, 2004, 6(9): 795-803.

    [10]

    Garcês H, Durzan D, Pedroso MC. Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana[J]. Ann Bot, 2001, 87(5): 567-574.

    [11]

    A-H-Mackerness S, John CF, Jordan B, Thomas B. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide[J]. Febs Lett, 2001, 489(2): 237-242.

    [12]

    Wang Y, Dai CC, Zhao YW, Peng Y. Fungal endophyte-induced volatile oil accumulation in Atractylodes lancea plantlets is mediated by nitric oxide, salicylic acid and hydrogen peroxide[J]. Process Biochem, 2011, 46(3): 730-735.

    [13]

    Xu MJ, Dong JF. Elicitor-induced nitric oxide burst is essential for triggering catharanthine synthesis in Catharanthus roseus suspension cells[J]. Appl Microbiol Biot, 2005, 67(1): 40-44.

    [14]

    Gao FK, Ren CG, Dai CC. Signaling effects of nitric oxide, salicylic acid, and reactive oxygen species on isoeuphpekinensin accumulation in Euphorbia pekinensis suspension cells induced by an endophytic fungal elicitor[J]. J Plant Growth Re-gul, 2012, 31(4): 490-497.

    [15]

    Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose[J]. Pol Acad Sci, 1998, 95(17): 10328-10333.

    [16] 徐茂军, 董菊芳, 朱睦元. NO参与真菌诱导子对红豆杉悬浮细胞中PAL活化和紫杉醇生物合成的促进作用[J]. 科学通报, 2004, 49(7): 667-672.
    [17]

    Hao G, Du X, Zhao F, Shi R, Wang J. Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus[J]. Plant Cell Tissue Organ Cult, 2009, 97(2): 175-185.

    [18]

    París R, Lamattina L, Casalongué CA. Nitric oxide promotes the wound-healing response of potato leaflets[J]. Plant Physiol Biochem, 2007, 45(1): 80-86.

    [19]

    Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells[J]. J Exp Bot, 2004, 395(55): 205-212.

    [20]

    Wang JW, Wu JY. Nitric oxide is involved in methyl jasmonate-induced defense responses and se-condary metabolism activities of Taxus cells[J]. Plant Cell Physiol, 2005, 46(6): 923-930.

    [21]

    Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Wendehenne D, Jeandroz S. Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to botrytis cinerea in Arabidopsis thaliana[J]. Plant Cell Enviro, 2012, 35(8): 1483-1499.

    [22]

    Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GF. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings[J]. Plant Cell Physiol, 2006, 47(3): 346-354.

    [23]

    Noreen S, Ashraf M. Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis[J]. Pak J Bot, 2008, 40(4): 1657-1663.

    [24]

    Popova LP, Maslenkova LT, Ivanova A, Stoinova Z. Role of Salicylic Acid in Alleviating Heavy Metal Stress, Environmental Adaptations and Stress To-lerance of Plants in the Era of Climate Change[M]. Berlin: Springer, 2012:447-466.

    [25]

    Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, Del Rio LA, Palma JM, Corpas FJ. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress[J]. Plant Cell Enviro, 2012, 35(2): 281-295.

    [26]

    Kundu S, Chakraborty D, Pal A. Salic acid ameliorates susceptible vigna mungo cultivar to mungbean yellow mosaic india virus infection[J]. Sci cult, 2012, 21(3): 231-236.

    [27]

    Doornbos RF, Geraats BP, Kuramae EE, Van Loon L, Bakker PA. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana[J]. Mol Plant Microbe In, 2011, 24(4): 395-407.

    [28]

    Dong JE, Wan GW, Liang ZS. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture[J]. J Biotechnol, 2010, 148(2-3): 99-104.

    [29]

    Modolo LV, Cunha FQ, Braga MR, Salgado I. Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor[J]. Plant Physiol, 2002, 130(3): 1288-1297.

    [30]

    Tewari RK, Paek KY. Salicylic acid-induced nitric oxide and ROS generation stimulate ginsenoside accumulation in Panax ginseng roots[J]. J Plant Growth Regul, 2011, 30(4): 396-404.

计量
  • 文章访问数:  1217
  • HTML全文浏览量:  0
  • PDF下载量:  1157
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-10
  • 修回日期:  2014-07-07
  • 网络出版日期:  2022-10-31
  • 发布日期:  2015-02-27

目录

    /

    返回文章
    返回