Root Meristematic Karyon Size: Possible New Index in the Evaluation of Plant Invasiveness
-
摘要: 植物的入侵性与DNA C-值之间存在统计学上的负相关关系。在这种关系中,细胞和细胞核大小可能起关键作用,因此我们推测分生组织细胞核大小在评估植物或至少某些分类群的入侵性方面有潜在的应用价值。本研究以豌豆属(Vicia)5种入侵能力不同的植物为材料,观察了它们的分生组织染色体、细胞核和细胞大小以及有丝分裂速率,同时测定了种子产量、单位种子干重产生的幼苗生物量(近似于幼苗相对生长速率)和生活史的长短。结果显示根尖分生区细胞核较小的植物细胞较小,细胞分裂速率快,单位种子干重产生的幼苗生物量高,种子小而数量多,生活史短。这些结果表明5种豌豆属植物中分生组织细胞核较小的倾向于具有较高的入侵性,其原因主要是:(1)能够产生小而多的种子;(2)具有较高的有丝分裂速率、相对较快的幼苗生长速率和短的生活史。分生组织细胞核大小影响植物入侵性与DNA C-值的作用是一致的,在植物入侵性评估模型中,分生组织细胞核大小在评估植物入侵性方面可能具有潜在的应用价值,而且其测定方便、费用低廉。但是,这一指标的应用范围和条件需要进一步筛选。Abstract: Many reports have found a statistically negative correlation between DNA C-value and plant invasiveness, with meristematic karyon size playing a key role in this correlation according to previous research. We hypothesized that meristematic karyon size could be applied as an evaluation index of plant invasiveness for at least some taxa. To test this hypothesis, we examined the sizes of karyons, cells, and mitosis rates of five Vicia species with different invasiveness and DNA C-values, and also investigated their seed production, seedling weight/dry seed weight (similar to relative seedling growth rate), and their life spans. Results showed that plants with smaller meristematic karyons were prone to have smaller chromosomes, karyons, cells, and seeds, quicker mitosis, higher relative seedling growth rate, shorter generation time, and produce more and smaller seeds. Furthermore, among the five Vicia species, plants with smaller meristematic karyons exhibited higher invasiveness, which may be explained by two aspects: (1) smaller seeds with much higher seed production; and (2) higher rates of cell division and seedling growth with shorter generation times. The effects of meristematic karyon size on plant invasiveness coincided with that of the DNA C-value. Therefore, for plant invasiveness evaluation models, meristematic karyon size has potential value in invasiveness assessment due to its convenience and lower expense, though more work is needed to determine its application scope and methodology.
-
Keywords:
- Meristematic tissues /
- Cytological indices /
- Invasiveness /
- Seed production /
- Gene-ration time
-
-
[1] Nielsen JA, Whigham PA, Frew RD, Callaway RM, Dickinson KJM. Invasion essentials: does secondary chemistry plasticity contribute to the invasiveness of Thymus vulgaris L.?[J]. Chemoecology, 2013, 24(1): 15-27.
[2] Gallagher RV, Leishman MR, Miller JT, Hui C, Richardson DM, Suda J, Trávníek P. Invasiveness in introduced Australian acacias: the role of species traits and genome size[J]. Divers Distrib, 2011, 17(5): 884-897.
[3] Chen GQ, Guo SL, Yin LP. Applying DNA C-values to evaluate invasiveness of angiosperms: validity and limitation[J]. Biol Invasions, 2010, 12(5): 1335-1348.
[4] Hodgins KA, Lai Z, Nurkowski K, Huang J, Rieseberg LH. The molecular basis of invasiveness: differences in gene expression of native and introduced common ragweed (Ambrosia artemisii-folia) in stressful and benign environments[J]. Mol Ecol, 2013, 22(9): 2496-2510.
[5] Baker HG. The evolution of weeds[J]. Annu Rev Ecol Syst, 1974, 5:1-24.
[6] Daehler CC. The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds[J]. Biol Conserv, 1998, 84(2):167-180.
[7] Williamson M, Fitter AH. The characters of successful invaders[J]. Biol Conserv, 1996, 78(1-2): 163-170
[8] Maillet J, Lopez-Garcia C. What criteria are relevant for predicting the invasive capacity of a new agricultural weed? The case of invasive American species in France[J]. Weed Res, 2000, 40(1): 11-26.
[9] Sutherland S. What makes a weed a weed: life history traits of native and exotic plants in the USA[J]. Oecologia, 2004, 141(1): 24-39.
[10] Bennett MD, Leitch IJ, Hanson L. DNA amounts in two samples of angiosperm weeds[J]. Ann Bot, 1998, 82(sup. A): 121-134.
[11] Rejmanek M. A theory of seed plant invasiveness: The first sketch[J]. Biol Conserv, 1996, 78(1-2): 171-181.
[12] Grotkopp E, Rejmanek M, Sanderson MJ. Evolution of genome size in pines (Pinus) and its life-history correlates: super tree analyses[J]. Evolution, 2004, 58(8): 1705-1729.
[13] Guo SL, Chen GQ, Mao LH. Relationship between DNA C-value and invasiveness in 539 an-giosperm species in China[J]. Acta Ecol Sin, 2008, 28(8): 3698-3705.
[14] Knight CA, Ackerly DD. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis[J]. Ecol Let, 2002, 5(1): 66-76.
[15] Fu GL, Feng YL. Nulcear DNA C-value of alien invasive and native plants and its relationship with invasiveness[J]. Chin J Ecol, 2007, 26(10): 1590-1594.
[16] Grime JP, Mowforth MA. Variation in genome sizean ecological interpretation[J]. Nature, 1982, 299(5879): 151-153
[17] Bennett MD, Heslop-Harrison JS, Smith JB, Ward JP. DNA density in mitotic and meiotic metaphase chromosomes of plants and animals[J]. J Cell Sci, 1983, 63: 173-179.
[18] Anderson LK, Stack SM, Fox MH, Chuanshan Z. The relation between genome size and synaptonemal complex length in higher plants[J]. Exp Cell Res, 1985, 156(2): 367-377.
[19] Rees H, Cameron FM, Hazarika MH, Jones GH. Nuclear variation between diploid angiosperms[J]. Nature, 1966, 211: 828-830
[20] Acosta MC, Guerra M, Moscone EA. Karyological relationships among some South American species of Solanum (Solanaceae) based on fluorochrome banding and nuclear DNA amount[J]. Plant Sys Evol, 2012, 298(8): 1547-1556.
[21] Andrés-Sánchez S, Temsch EM, Rico E, Martínez-Ortega MM. Genome size in Filago L. (Astera-ceae, Gnaphalieae) and related genera: phylogenetic, evolutionary and ecological implications[J]. Plant Sys Evol, 2013, 299(2): 331-345.
[22] Meng R, Finn C. Determining ploidy level and nuclear DNA content in Rubus by flow cytometry[J]. J Amer Soc Hort Sci, 2002, 127(5): 767-775.
[23] Sugiyama S, Yamaguchi K, Yamada T. Intraspecific phenotypic variation associated with nuclear DNA content in Lolium perenne L.[J]. Euphytica, 2002, 128(2): 145-151.
[24] Dolezel J, Greilhuber J, Lucretti S. Plant genome size estimation by flow cytometry: inter-laboratory comparison[J]. Ann Bot, 1998, 82(sup. A): 17-26.
[25] Holm LG, Pancho JV, Herberger JP. A geogra-phical atlas of world weeds[M]. New York: John Wiley and Sons, 1979.
[26] Li YH. Weeds in China[M]. Beijing: China Agriculture Press, 1998.
[27] Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms[J]. Ann Bot, 1995, 76(2): 113-176.
[28] Daehler CC. Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration[J]. Ann Rev Ecol Evol Sys, 2003, 34(1): 183-211.
[29] Funk JL, Vitousek PM. Resource-use efficiency and plant invasion in low-resource systems[J]. Nature, 2007, 446(7139): 1079-1081.
[30] Seastedt T. Plant ecology-Resourceful invaders[J]. Nature, 2007, 446(7139): 985-986.
[31] Caley P, Lonsdale WM, Pheloung PC. Quantifying uncertainty in predictions of invasiveness, with emphasis on weed risk assessment[J]. Boil Invasions, 2006, 8(8) 1595-1604.
[32] Li ZY, Xie Y. Invasive Species in China[M]. Bejing: China Forestry Publishing House, 2002.
[33] Ni LP, Guo SL. Review on relationship between invasiveness of plants and their DNA C-value[J]. Acta Ecol Sin, 2005, 25(9):2372-2381.
计量
- 文章访问数: 1200
- HTML全文浏览量: 0
- PDF下载量: 1433