高级检索+

多组学助力紫杉醇合成生物学研究

吴迎梅, 廖庆刚, 尚轶, 龚振平, 苟君波

吴迎梅, 廖庆刚, 尚轶, 龚振平, 苟君波. 多组学助力紫杉醇合成生物学研究[J]. 植物科学学报, 2022, 40(6): 853-866. DOI: 10.11913/PSJ.2095-0837.2022.60853
引用本文: 吴迎梅, 廖庆刚, 尚轶, 龚振平, 苟君波. 多组学助力紫杉醇合成生物学研究[J]. 植物科学学报, 2022, 40(6): 853-866. DOI: 10.11913/PSJ.2095-0837.2022.60853
Wu Ying-Mei, Liao Qing-Gang, Shang Yi, Gong Zhen-Ping, Gou Jun-Bo. Recent progress of paclitaxel biosynthesis aided by multi-omics[J]. Plant Science Journal, 2022, 40(6): 853-866. DOI: 10.11913/PSJ.2095-0837.2022.60853
Citation: Wu Ying-Mei, Liao Qing-Gang, Shang Yi, Gong Zhen-Ping, Gou Jun-Bo. Recent progress of paclitaxel biosynthesis aided by multi-omics[J]. Plant Science Journal, 2022, 40(6): 853-866. DOI: 10.11913/PSJ.2095-0837.2022.60853
吴迎梅, 廖庆刚, 尚轶, 龚振平, 苟君波. 多组学助力紫杉醇合成生物学研究[J]. 植物科学学报, 2022, 40(6): 853-866. CSTR: 32231.14.PSJ.2095-0837.2022.60853
引用本文: 吴迎梅, 廖庆刚, 尚轶, 龚振平, 苟君波. 多组学助力紫杉醇合成生物学研究[J]. 植物科学学报, 2022, 40(6): 853-866. CSTR: 32231.14.PSJ.2095-0837.2022.60853
Wu Ying-Mei, Liao Qing-Gang, Shang Yi, Gong Zhen-Ping, Gou Jun-Bo. Recent progress of paclitaxel biosynthesis aided by multi-omics[J]. Plant Science Journal, 2022, 40(6): 853-866. CSTR: 32231.14.PSJ.2095-0837.2022.60853
Citation: Wu Ying-Mei, Liao Qing-Gang, Shang Yi, Gong Zhen-Ping, Gou Jun-Bo. Recent progress of paclitaxel biosynthesis aided by multi-omics[J]. Plant Science Journal, 2022, 40(6): 853-866. CSTR: 32231.14.PSJ.2095-0837.2022.60853

多组学助力紫杉醇合成生物学研究

基金项目: 

国家自然科学基金(32000236)

国家重点研发项目(2019YFA09006200)。

详细信息
    作者简介:

    吴迎梅(1997-),女,硕士研究生,研究方向为生物化学与分子生物学(E-mail: ymn243110@163.com)。

    通讯作者:

    苟君波,E-mail: junbogou@163.com

  • 中图分类号: TQ463

Recent progress of paclitaxel biosynthesis aided by multi-omics

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (32000236) and the National Key R&D Program of China (2019YFA09006200).

undefined

  • 摘要: 紫杉醇是高效的天然抗癌产物,广泛用于多种癌症的临床治疗。目前紫杉醇的生产主要是从红豆杉属(Taxus)植物中提取天然前体(如巴卡亭Ⅲ)然后再化学合成。受制于红豆杉植物资源,导致制药成本高。合成生物学的兴起为紫杉醇原料药的获取提供了新途径,但紫杉醇合成生物学的研究还有待推进。近年来,多组学被逐步应用到紫杉醇的合成生物学研究中。本文综述了多组学助力紫杉醇合成通路基因、调控基因和异源合成研究的最新进展,为紫杉醇的合成生物学研究提供了新的见解。
    Abstract: Taxol (generic name paclitaxel) is a highly effective anti-cancer agent widely used in the clinical treatment of various cancers. At present, the production of paclitaxel is primarily based on artificial semi-synthesis from extracted intermediates (such as baccatin Ⅲ). This commercial method still relies on Taxus plant resources, resulting in high medical costs. The rise of synthetic biology provides a novel approach to acquire sufficient paclitaxel, but research on its biosynthesis is yet to be advanced. Recently, multi-omics approaches have been applied in biosynthesis research on paclitaxel. In the present paper, we review recent progress on the biosynthesis, regulation, and heterologous production of paclitaxel aided by multi-omics, providing new insights into paclitaxel biosynthesis.
  • [1] 陆小鸿. "珍稀抗癌"红豆杉[J]. 广西林业, 2017(4):21-22.
    [2]

    Ji YH, Liu CK, Landis JB, Deng M, Chen JH. Plastome phylogenomics of Cephalotaxus (Cephalotaxaceae) and allied genera[J]. Ann Bot, 2021, 127(5):697-708.

    [3]

    World Botanical[EB/OL].[2021-03-09]. http://www.worldbotanical.com/TAXNA.HTM.

    [4]

    Howat S, Park B, Oh IS, Jin YW, Lee EK, Loake GJ. Paclitaxel:biosynthesis, production and future prospects[J]. New Biotechnol, 2014, 31(3):242-245.

    [5]

    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. Ⅵ. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia[J]. J Am Chem Soc, 1971, 93(9):2325-2327.

    [6]

    Schiff P, Fant J, Horwitz S. Promotion of microtubule assembly in vitro by taxol[J]. Nature, 1979, 277:665-667.

    [7]

    Crown J, O'Leary M, Ooi WS. Docetaxel and paclitaxel in the treatment of breast cancer:a review of clinical expe-rience[J]. Oncologist, 2004, 9(S2):24-32.

    [8]

    Baloglu E, Kingston DGI. A new semisynthesis of paclita-xel from baccatin Ⅲ[J]. J Nat Prod, 1999, 62(7):1214.

    [9]

    Trimble EL, Adams JD, Vena D, Hawkins MJ, Friedman MA, et al. Paclitaxel for platinum-refractory ovarian can-cer:results from the first 1000 patients registered to natio-nal cancer institute treatment referral center 9103[J]. J Clin Oncol, 1993, 11(12):2405-2410.

    [10]

    Walsh V, Goodman J. Cancer chemotherapy, biodiversity, public and private property:the case of the anti-cancer drug taxol[J]. Soc Sci Med, 1999, 49(9):1215-1225.

    [11]

    Suffness M. Taxol:Science and Applications[M]. Boca Raton:CRC Press, 1995:436.

    [12]

    Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, et al. Total synthesis of taxol[J]. Nature, 1994, 367(6464):630-634.

    [13]

    Mutanda I, Li JH, Xu FL, Wang Y. Recent advances in metabolic engineering, protein engineering, and transcriptome-guided insights toward synthetic production of taxol[J]. Front Bioeng Biotechnol, 2021, 9:632269.

    [14]

    Kuang XJ, Sun SJ, Wei JH, Li Y, Sun C. Iso-Seq analysis of the Taxus cuspidata transcriptome reveals the complexity of taxol biosynthesis[J]. BMC Plant Biol, 2019, 19(1):210.

    [15]

    Yu CN, Luo XJ, Zhan XR, Hao J, Zhang L, et al. Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas[J]. BMC Plant Biol, 2018, 18(1):197.

    [16]

    Hao J, Guo H, Shi XN, Wang Y, Wan QH, et al. Compa-rative proteomic analyses of two Taxus species (Taxus×media and Taxus mairei) reveals variations in the metabolisms associated with paclitaxel and other metabolites[J]. Plant Cell Physiol, 2017, 58(11):1878-1890.

    [17]

    Hu YJ, Gu CC, Wang XF, Min L, Li CC. Asymmetric total synthesis of taxol[J]. J Am Chem Soc, 2021, 143(42):17862-17870.

    [18]

    Scribano CM, Wan J, Esbona K, Tucker JB, Lasek A, et al. Chromosomal instability sensitizes patient breast tumors to multipolar divisions induced by paclitaxel[J]. Sci Transl Med, 2021, 13(610):eabd4811.

    [19]

    Xiong XY, Gou JB, Liao QG, Li YL, Zhou Q, et al. The Taxus genome provides insights into paclitaxel biosynthesis[J]. Nat Plants, 2021, 7(8):1026-1036.

    [20]

    Cheng J, Wang X, Liu XN, Zhu XX, Li ZH, et al. Chromosome-level genome of Himalayan yew provides insights into the origin and evolution of the paclitaxel biosynthetic pathway[J]. Mol Plant, 2021, 14(7):1199-1209.

    [21]

    Song C, Fu FF, Yang LL, Niu Y, Tian ZY, et al. Taxus yunnanensis genome offers insights into gymnosperm phylogeny and taxol production[J]. Commun Biol, 2021, 4(1):1203.

    [22]

    WHO (World Health Organization)[EB/OL].[2022-01-03]https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

    [23]

    Wang T, Li LY, Zhuang WB, Zhang FJ, Shu XC, et al. Recent research progress in taxol biosynthetic pathway and acylation reactions mediated by Taxus acyltransfera-ses[J]. Molecules, 2021, 26(10):2855.

    [24]

    Ramírez-Estrada K, Altabella T, Onrubia M, Moyano E, Notredame C, et al. Transcript profiling of jasmonate-elicited Taxus cells reveals a β-phenylalanine-CoA ligase[J]. Plant Biotechnol J, 2016, 14(1):85-96.

    [25]

    Sanchez-Muñoz R, Perez-Mata E, Almagro L, Cusido RM, Bonfill M, et al. A novel hydroxylation step in the taxane biosynthetic pathway:a new approach to paclitaxel production by synthetic biology[J]. Front Bioeng Biotechnol, 2020, 8:410.

    [26]

    Hezari M, Lewis NG, Croteau R. Purification and characterization of taxa-4(5), 11(12)-diene synthase from Pacific yew (Taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis[J]. Arch Biochem Biophys, 1995, 322(2):437-444.

    [27]

    Guerra-Bubb J, Croteau R, Williams RM. The early stages of Taxol biosynthesis:an interim report on the synthesis and identification of early pathway metabolites[J]. Nat Prod Rep, 2012, 29(6):683-696.

    [28]

    Kai GY, Zhao LX, Zhang L, Li ZG, Guo BH, et al. Cha-racterization and expression profile analysis of a new cDNA encoding taxadiene synthase from Taxus media[J]. J Biochem Mol Biol, 2005, 38(6):668-675.

    [29]

    Escorcia AM, Van Rijn JPM, Cheng GJ, Schrepfer P, Bruck TB, Thiel W. Molecular dynamics study of taxadiene synthase catalysis[J]. J Comput Chem, 2018, 39(19):1215-1225.

    [30]

    Van Rijn JPM, Escorcia AM, Thiel W. QM/MM study of the taxadiene synthase mechanism[J]. J Comput Chem, 2019, 40(21):1902-1910.

    [31]

    Chau MD, Croteau R. Molecular cloning and characterization of a cytochrome P450 taxoid 2α-hydroxylase involved in taxol biosynthesis[J]. Arch Biochem Biophys, 2004, 427(1):48-57.

    [32]

    Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, et al. CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5), 11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane[J]. J Biol Chem, 2008, 283(10):6067-6075.

    [33]

    Chau MD, Jennewein S, Walker K, Croteau R. Taxol biosynthesis:molecular cloning and characterization of a cytochrome P450 taxoid 7β-hydroxylase[J]. Chem Biol, 2004, 11(5):663-672.

    [34]

    Schoendorf A, Rithner CD, Williams RM, Croteau RB. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast[J]. Proc Natl Acad Sci USA, 2001, 98(4):1501-1506.

    [35]

    Jennewein S, Rithner CD, Williams RM, Croteau RB. Taxol biosynthesis:taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase[J]. Proc Natl Acad Sci USA, 2001, 98(24):13595-13600.

    [36]

    Liao WF, Zhao SY, Zhang M, Dong KG, Chen Y, et al. Transcriptome assembly and systematic identification of novel cytochrome P450s in Taxus chinensis[J]. Front Plant Sci, 2017, 8:1468.

    [37]

    Srividya N, Lange I, Hartmann M, Li QR, Mirzaei M, Lange BM. Biochemical characterization of acyl activating enzymes for side chain moieties of taxol and its analogs[J]. J Biol Chem, 2020, 295(15):4963-4973.

    [38]

    Shirazi MR, Rahpeyma SA, Monfared SR, Zolala J, Lohrasbi-Nejad A. Identification and in-silico characterization of taxadien-5α-ol-O-acetyltransferase (TDAT) gene in Corylus avellana L.[J]. PLoS One, 2021, 16(8):e0256704.

    [39]

    Wang YF, Shi QW, Dong M, Kiyota H, Gu YC, Cong B. Natural taxanes:developments since 1828[J]. Chem Rev, 2011, 111(12):7652-7709.

    [40]

    Zhang M, Li ST, Nie L, Chen QP, Xu XP, et al. Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis[J]. Plant Mol Biol, 2015, 89(4-5):463-473.

    [41] 姚瑞枫, 张蒙, 张鹏, 李书涛, 陈丽, 等. 筛选dbat启动子顺式元件结合蛋白的酵母单杂交文库的构建[J]. 生物技术通报, 2009(9):117-120.

    Yao RF, Zhang M, Zhang P, Li ST, Chen L, et al. Construction of yeast one-hybrid library for screening the bin-ding proteins of dbat promoter cis-element[J]. Biotechno-logy Bulletin, 2009(9):117-120.

    [42] 戴怡龄. 红豆杉中与异戊二烯代谢途径相关的AP2类转录调控因子的克隆与功能研究[D]. 上海:复旦大学, 2008:52-112.
    [43]

    Zhang M, Chen Y, Jin XF, Cai YX, Yuan YY, et al. New different origins and evolutionary processes of AP2/EREBP transcription factors in Taxus chinensis[J]. BMC Plant Biol, 2019, 19(1):413.

    [44]

    Zhang KK, Jiang LY, Wang X, Han H, Chen DF, et al. Transcriptome-wide analysis of AP2/ERF transcription factors involved in regulating taxol biosynthesis in Taxus×media[J]. Ind Crops Prod, 2021, 171:113972.

    [45]

    Zhang M, Chen Y, Nie L, Jin XF, Liao WF, et al. Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis[J]. Sci Rep, 2018, 8(1):5197.

    [46]

    Li S, Zhang P, Zhang M, Fu C, Yu L. Functional analysis of a WRKY transcription factor involved in transcriptional activation of the DBAT gene in Taxus chinensis[J]. Plant Biol, 2013, 15(1):19-26.

    [47]

    Chen Y, Zhang H, Zhang M, Zhang WL, Ou ZQ, et al. Salicylic acid-responsive factor TcWRKY33 positively regulates taxol biosynthesis in Taxus chinensis in direct and indirect ways[J]. Front Plant Sci, 2021, 12:697476.

    [48]

    Zhang M, Jin XF, Chen Y, Wei M, Liao WF, et al. TcMYC2a, a basic helix-loop-helix transcription factor, transduces JA-signals and regulates taxol biosynthesis in Taxus chinensis[J]. Front Plant Sci, 2018, 9:863.

    [49]

    Cui YP, Mao RJ, Chen J, Guo ZG. Regulation mechanism of MYC family transcription factors in jasmonic acid signalling pathway on taxol biosynthesis[J]. Int J Mol Sci, 2019, 20(8):1843.

    [50]

    Yu CN, Luo XJ, Zhang CC, Xu XY, Huang JF, et al. Tissue-specific study across the stem of Taxus media identifies a phloem-specific TmMYB3 involved in the transcriptional regulation of paclitaxel biosynthesis[J]. Plant J, 2020, 103(1):95-110.

    [51]

    Yu CN, Huang JF, Wu QC, Zhang CC, Li XL,et al. Role of female-predominant MYB39-bHLH13 complex in sexually dimorphic accumulation of taxol in Taxus media[J]. Hortic Res, 2022, 9:uhac062.

    [52]

    Cao XY, Xu LX, Li LD, Wan W, Jiang JH. TcMYB29a, an ABA-responsive R2R3-MYB transcriptional factor, upregulates taxol biosynthesis in Taxus chinensis[J]. Front Plant Sci, 2022, 13:804593.

    [53]

    Zhou T, Luo XJ, Yu CN, Zhang CC, Zhang L, et al. Transcriptome analyses provide insights into the expression pattern and sequence similarity of several taxol biosynthesis-related genes in three Taxus species[J]. BMC Plant Biol, 2019, 19(1):33.

    [54]

    Tong YR, Luo YF, Gao W. Biosynthesis of paclitaxel using synthetic biology[J]. Phytochem Rev, 2022, 21(3):863-877.

    [55]

    Huang QL, Roessner CA, Croteau R, Scott AI. Enginee-ring Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol[J]. Bioorg Med Chem, 2001, 9(9):2237-2242.

    [56]

    Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000):70-74.

    [57]

    Biggs BW, Lim CG, Sagliani K, Shankar S, Stephanopou-los G, et al. Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia coli[J]. Proc Natl Acad Sci USA, 2016, 113(12):3209-3214.

    [58]

    Li BJ, Wang H, Gong T, Chen JJ, Chen TJ, et al. Improving 10-deacetylbaccatin Ⅲ-10-β-O-acetyltransferase cata-lytic fitness for taxol production[J]. Nat Commun, 2017, 8(1):15544.

    [59]

    Wang H, Zhang BY, Gong T, Chen TJ, Chen JJ, et al. Construction of acetyl-CoA and DBAT hybrid metabolic pathway for acetylation of 10-deacetylbaccatin Ⅲ to baccatin Ⅲ[J]. Acta Pharm Sin B, 2021, 11(10):3322-3334.

    [60]

    Luo XZ, Reiter MA, d'Espaux L, Wong J, Denby CM, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567(7746):123-126.

    [61]

    Srinivasan P, Smolke CD. Biosynthesis of medicinal tropane alkaloids in yeast[J]. Nature, 2020, 585(7826):614-619.

    [62] 翟芳, 宋田青, 肖文海, 丁明珠, 乔建军, 元英进. 产5α羟化紫杉二烯醇人工酵母的组合设计构建[J]. 化工学报, 2016, 67(1):315-323.

    Zhai F, Song TQ, Xiao WH, Ding MZ, Qiao JJ, Yuan YJ. Combinatorial design and construction of artificial yeast for production of taxadien-5α-ol[J]. CIESC Journal, 2016, 67(1):315-323.

    [63]

    Nowrouzi B, Li RA, Walls LE, d'Espaux L, Malcı K, et al. Enhanced production of taxadiene in Saccharomyces ce-revisiae[J]. Microb Cell Fact, 2020, 19(1):200.

    [64]

    Walls LE, Martinez JL, Del Rio Chanona EA, Rios-Solis L. Definitive screening accelerates taxol biosynthetic pathway optimization and scale up in Saccharomyces cerevisiae cell factories[J]. Biotechnol J, 2022, 17(1):2100414.

    [65]

    Apel AR, d'Espaux L, Wehrs M, Sachs D, Li RA, et al. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 2017, 45(1):496-508.

    [66]

    Zhou K, Qiao KJ, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nat Biotechnol, 2015, 33(4):377-383.

    [67]

    Edgar S, Li FS, Qiao KJ, Weng JK, Stephanopoulos G. Engineering of taxadiene synthase for improved selectivity and yield of a key taxol biosynthetic intermediate[J]. ACS Synth Biol, 2017, 6(2):201-205.

    [68]

    Schrepfer P, Buettner A, Goerner C, Hertel M, van Rijn J, et al. Identification of amino acid networks governing catalysis in the closed complex of class I terpene syntha-ses[J]. Proc Natl Acad Sci USA, 2016, 113(8):E958-E967.

    [69]

    Edgar S, Zhou K, Qiao KJ, King JR, Simpson JH, Ste-phanopoulos G. Mechanistic insights into taxadiene epoxidation by taxadiene-5α-hydroxylase[J]. ACS Chem Biol, 2016, 11(2):460-469.

    [70] 辛燕花, 肖招燕, 尤琳烽, 郭丽琼, 林俊芳. 紫杉二烯合酶基因在灵芝中的表达[J]. 中国农业科学, 2014, 47(3):546-552.

    Xin YH, Xiao ZY, You LF, Guo LQ, Lin JF. Heterologous expression of taxadiene synthase gene in Ganoderma lucidum[J]. Scientia Agricultura Sinica, 2014, 47(3):546-552.

    [71]

    Bian GK, Yuan YJ, Tao H, Shi XF, Zhong XF, et al. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6[J]. Biotechnol J, 2017, 12(4):1600697.

    [72] 朱泽燕, 李军超, 王启明, 杨淑慎. 农杆菌介导Txpam基因转化烟曲霉TMS-26及其产紫杉醇效果评价[J]. 菌物学报, 2021, 40(8):2087-2101.

    Zhu ZY, Li JC, Wang QM, Yang SS. Agrobacterium-mediated transformation of Aspergillus fumigatus TMS-26 with a phenylalanine aminomutase gene and evaluation of the transformant potential for paclitaxel production[J]. Mycosystema, 2021, 40(8):2087-2101.

    [73]

    Besumbes Ó, Sauret-Güeto S, Phillips MA, Imperial S, Rodríguez-Concepción M, Boronat A. Metabolic enginee-ring of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of taxol[J]. Biotechnol Bioeng, 2004, 88(2):168-175.

    [74]

    Kovacs K, Zhang LN, Linforth RST, Whittaker B, Hayes CJ, Fray RG. Redirection of carotenoid metabolism for the efficient production of taxadiene[taxa-4(5), 11(12)-diene] in transgenic tomato fruit[J]. Transgenic Res, 2007, 16(1):121-126.

    [75]

    Li MY, Jiang FS, Yu XL, Miao ZQ. Engineering isoprenoid biosynthesis in Artemisia annua L. for the production of taxadiene:a key intermediate of taxol[J]. Biomed Res Int, 2015, 2015:504932.

    [76]

    Li JH, Mutanda I, Wang KB, Yang L, Wang JW, Wang Y. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana[J]. Nat Commun, 2019, 10(1):4850.

    [77]

    Liang MD, Liu LS, Xu F, Zeng XQ, Wang RJ, et al. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach[J]. Nucleic Acids Res, 2022, 50(6):3581-3592.

    [78]

    Venegas-Rioseco J, Ginocchio R, Ortiz-Calderón C. Increase in phytoextraction potential by genome editing and transformation:a review[J]. Plants (Basel), 2021,11(1):86.

    [79]

    Lim S, Kim J, Kim YJ, Xu DW, Clark DS. CRISPR/Cas-directed programmable assembly of multi-enzyme complexes[J]. Chem Commun (Camb), 2020, 56(36):4950-4953.

    [80]

    Köksal M, Jin YH, Coates RM, Croteau R, Christianson DW. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis[J]. Nature, 2011, 469(7328):116-120.

    [81]

    Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF. Plant gene editing through de novo induction of meristems[J]. Nat Biotechnol, 2020, 38(1):84-89.

    [82]

    Jennewein S, Rithner CD, Williams RM, Croteau R. Ta-xoid metabolism:taxoid 14β-hydroxylase is a cytochrome P450-dependent monooxygenase[J]. Arch Biochem Biophys, 2003, 413(2):262-270.

  • 期刊类型引用(4)

    1. 孙凡淑,党舒扬,郑东然,张贺,王宇,李玉花,吴昊. 紫杉醇生物合成与转录调控机制研究进展. 生物工程学报. 2024(05): 1380-1405 . 百度学术
    2. 吴世龙,李妍妍. 紫杉醇药物资源的研究概况. 国土与自然资源研究. 2024(04): 79-83 . 百度学术
    3. 刘晓楠,李静,祝晓熙,徐子硕,齐健,江会锋. 紫杉醇生物合成机制研究进展. 合成生物学. 2024(03): 527-547 . 百度学术
    4. 王志新. 多媒体素材在植物学课程思政教学中的运用分析. 高教学刊. 2023(29): 177-180+184 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  343
  • HTML全文浏览量:  69
  • PDF下载量:  82
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-07-17
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回