高级检索+

盐胁迫诱导野大豆生理和光合作用的变化

许基磊, 汪兴中, 范吉标

许基磊, 汪兴中, 范吉标. 盐胁迫诱导野大豆生理和光合作用的变化[J]. 植物科学学报, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829
引用本文: 许基磊, 汪兴中, 范吉标. 盐胁迫诱导野大豆生理和光合作用的变化[J]. 植物科学学报, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829
Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829
Citation: Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829
许基磊, 汪兴中, 范吉标. 盐胁迫诱导野大豆生理和光合作用的变化[J]. 植物科学学报, 2022, 40(6): 829-838. CSTR: 32231.14.PSJ.2095-0837.2022.60829
引用本文: 许基磊, 汪兴中, 范吉标. 盐胁迫诱导野大豆生理和光合作用的变化[J]. 植物科学学报, 2022, 40(6): 829-838. CSTR: 32231.14.PSJ.2095-0837.2022.60829
Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. CSTR: 32231.14.PSJ.2095-0837.2022.60829
Citation: Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. CSTR: 32231.14.PSJ.2095-0837.2022.60829

盐胁迫诱导野大豆生理和光合作用的变化

基金项目: 

国家自然科学基金(31720103905)。

详细信息
    作者简介:

    许基磊(1993-),男,硕士,研究方向为植物生理生态(E-mail:xjl333753@163.com)。

    通讯作者:

    范吉标,E-mail: 006298@yzu.edu.cn

  • 中图分类号: Q945.78

Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31720103905).

  • 摘要: 野大豆(Glycine soja Sieb. et Zucc.)是栽培大豆(G. max (L.)Merr.)的祖先,在遗传育种研究中具有重要意义。本研究以野大豆为实验材料,通过检测快速叶绿素荧光和820 nm光反射来研究盐胁迫对光系统化学活性的影响。结果显示,盐胁迫下,野大豆幼苗叶片叶绿素a含量显著降低,快速叶绿素荧光诱导动力学曲线(OJIP)发生显著变化,JIP-test参数中性能指标PIABS和PItotal、比能量通量参数RC/ABS、TRo/RC、ETo/RC和REo/RC均降低。单位反应中心耗散的能量DIO/RC增加。同时,盐胁迫显著降低量子产量和效率参数ψEo、φEo、δRo和φRo。820 nm光反射MR/MRO曲线也发生变化,其变化时间间隔与OJIP一致。同时,盐胁迫也导致野大豆幼苗叶片丙二醛(MDA)含量显著增加,渗透调节物质和抗氧化酶活性发生显著变化。
    Abstract: Annual vine Glycine soja Sieb. et Zucc. is considered the ancestor of cultivated soybean (G. max (L.)Merr.), but exhibits greater genetic diversity. At present, the G. soja growth environment is under high-salt stress, but its photosynthetic performance under such conditions remains unknown. In this study, we investigated the effects of salt stress on the photochemical activity of G. soja photosynthesis based on prompt chlorophyll fluorescence and modulated 820-nm reflection. Results showed that chlorophyll a content was significantly reduced, and the chlorophyll fluorescence induction transient (OJIP) curve was significantly changed in seedling leaves after salt stress treatment. The JIP-test parameters, including performance indices such as PIABS and PItotal and energy flux parameters such as RC/ABS, TRo/RC, ETo/RC, and REo/RC, were decreased, while DIo/RC was increased. Quantum yield and efficiency parameters, such as ψEo, φEo, δRo, and φRo, were decreased in seedling leaves exposed to salt stress. The shape of the MR/MRO ratio curve changed after salt stress treatment. Furthermore, changes in the MR/MRO ratio showed high correlation to the time intervals of chlorophyll fluorescence. Salt stress led to membrane lipid peroxidation in the seedling leaves, resulting in a significant increase in MDA content, while relative water content was significantly decreased. Thus, the seedling leaves adapted to salt stress by significantly increasing osmotic regulators and antioxidant enzyme activities.
  • [1] 隋利, 易家宁, 王康才, 李羽青. 不同氮素形态及其配比对盐胁迫下紫苏生理特性的影响[J]. 生态学杂志, 2018, 37(11):3277-3283.

    Sui L, Yi JN, Wang KC, Li YQ. Effects of different forms and ratios of nitrogen on physiological characteristics of Perilla frutescens (L.) Britt under salt stress[J]. Chinese Journal of Ecology, 2018, 37(11):3277-3283.

    [2] 祁伟亮, 孙万仓, 马骊. 活性氧参与调控植物生长发育和胁迫应激响应机理的研究进展[J]. 干旱地区农业研究, 2021, 39(3):69-81.

    Qi WL, Sun WC, Ma L. Research progress of reactive oxygen species involved in regulating plant growth and development and the mechanisms of stress response[J]. Agricultural Research in the Arid Areas, 2021, 39(3):69-81.

    [3] 杜卓, 路运才. 玉米抗旱化学调控技术研究进展[J]. 中国农学通报, 2020, 36(33):7-11.

    Du Z, Lu YC. Chemical regulation technology of drought resistance in maize:a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(33):7-11.

    [4] 张利霞, 常青山, 侯小改, 刘伟, 李晓鹏, 等. NaCl胁迫对夏枯草幼苗抗氧化能力及光合特性的影响[J]. 草业学报, 2017, 26(11):167-175.

    Zhang LX, Chang QS, Hou XG, Liu W, Li XP, et al. Effects of NaCl stress on antioxidant capacity and photosynthetic characteristics of Prunella vulgaris seedlings[J]. Acta Prataculturae Sinica, 2017, 26(11):167-175.

    [5]

    Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, et al. Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress[J]. Front Plant Sci, 2016, 7:838.

    [6] 马婷, 滕玉瑾, 李翠祥, 杨颖丽. 盐胁迫下黄花补血草幼苗ROS代谢酶活性的变化[J]. 植物生理学报, 2016, 52(2):177-186.

    Ma T, Teng YJ, Li CX, Yang YL. Changes of ROS meta-bolizing enzyme activities in Limonium aureum seedlings under salinity stress[J]. Plant Physiology Journal, 2016, 52(2):177-186.

    [7] 杨伟, 刘文辉, 马祥, 马晖玲. 干旱胁迫对2种不同抗旱性老芒麦幼苗ROS积累及抗氧化系统的影响[J]. 草地学报, 2020, 28(3):684-693.

    Yang W, Liu WH, Ma X, Ma HL. Effects of ROS accumulation and antioxidant system in two different drought resistant Elymus sibiricus under drought stress[J]. Acta Agrestia Sinica, 2020, 28(3):684-693.

    [8]

    Sofo A, Scopa A, Nuzzaci M, Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses[J]. Int J Mol Sci, 2015, 16(6):13561-13578.

    [9] 陈晓晶, 徐忠山, 赵宝平, 米俊珍, 严威凯, 刘景辉. 盐胁迫对燕麦根系呼吸代谢、抗氧化酶活性及产量的影响[J]. 生态学杂志, 2021, 40(9):2773-2782.

    Chen XJ, Xu ZS, Zhao BP, Mi JZ, Yan WK, Liu JH. Effects of salt stress on root respiratory metabolism, antioxidant enzyme activities, and yield of oats[J]. Chinese Journal of Ecology, 2021, 40(9):2773-2782.

    [10]

    Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, et al. Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants[J]. Int J Mol Sci, 2017, 18(1):200.

    [11]

    Mehta P, Jajoo A, Mathur S, Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem Ⅱ in wheat leaves[J]. Plant Physiol Biochem, 2010, 48(1):16-20.

    [12]

    Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of pho-tosystem Ⅱ and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. J Plant Physiol, 2015, 185:75-83.

    [13]

    Schansker G, Tóth SZ, Strasser RJ. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem Ⅰ in the Chl a fluorescence rise OJIP[J]. Biochim Biophys Acta, 2005, 1706(3):250-261.

    [14]

    Strasser RJ. The Fo and the O-J-I-P fluorescence rise in higher plants and algae[M]/Zhang WJ, Huang ZL, Wang Q, Guan YN. Effects of low temperature on leaf anatomy and photosynthetic perfor-mance in different genotypes of wheat following a rice crop[J]. Int J Agric Biol, 2015, 17(6):1165-1171.

    [15]

    Zhang WJ, Huang ZL, Wang Q, Guan YN. Effects of low temperature on leaf anatomy and photosynthetic perfor-mance in different genotypes of wheat following a rice crop[J]. Int J Agric Biol, 2015, 17(6):1165-1171.

    [16]

    Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V. Simu-ltaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochim Biophys Acta, 2010, 1797(6-7):1313-1326.

    [17]

    Li P, Li PM, Ma FW, Goltsev V. Photosynthetic perfor-mance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820 nm reflection[J]. J Photochem Photobiol B, 2014, 137:144-150.

    [18]

    Fujita R, Ohara M, Okazaki K, Shimamoto Y. The extent of natural cross-pollination in wild soybean (Glycine soja)[J]. J Hered, 1997, 88(2):124-128.

    [19]

    Li YH, Li W, Zhang C, Yang L, Chang RZ, et al. Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci[J]. New Phytol, 2010, 188(1):242-253.

    [20]

    Jiao Y, Bai ZZ, Xu JY, Zhao ML, Khan Y, et al. Metabolomics and its physiological regulation process reveal the salt-tolerant mechanism in Glycine soja seedling roots[J]. Plant Physiol Biochem, 2018, 126:187-196.

    [21]

    Zhang JL, Wang JX, Jiang W, Liu J, Yang S, et al. Identification and analysis of NaHCO3 stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq[J]. Front Plant Sci, 2016, 7:1842.

    [22] 丁春霞, 周峰, 华春. 盐胁迫下植物光系统Ⅱ的光谱学和蛋白质亚基研究进展[J]. 天津农业科学, 2016, 22(5):5-7.

    Ding CX, Zhou F, Hua C. Advances in spectroscopy and protein subunits of photosystem Ⅱ in plant under salt stress[J]. Tianjin Agricultural Sciences, 2016, 22(5):5-7.

    [23]

    Hu ZR, Fan JB, Chen K, Amombo E, Chen L, Fu JM. Effects of ethylene on photosystem Ⅱ and antioxidant enzyme activity in Bermuda grass under low temperature[J]. Photosynth Res, 2016, 128(1):59-72.

    [24]

    Fan JB, Ren J, Zhu WX, Amombo E, Fu JM, Chen L. Antioxidant responses and gene expression in bermudagrass under cold stress[J]. J Amer Soc Hort Sci, 2015, 139(6):699-705.

    [25] 汤章城. 现代植物生理学实验指南[M]. 北京:科学出版社, 1999:300-380.
    [26] 滕志远, 张会慧, 代欣, 胡举伟, 张秀丽,等.干旱对桑树叶片光系统Ⅱ活性的影响[J]. 浙江农业学报,2016,28(1):1-8.

    Teng ZY, Zhang HH, Dai X, Hu JW, Zhang XL, et al. Effects of drought stress on PSⅡ photochemical activity in leaves of Morus alba[J]. Acta Agriculturae Zhejiangensis, 2016,28(1):1-8.

    [27] 姬语潞, 杨维, 李涵, 曹桦, 陆琳, 等. 铁皮石斛叶色突变体的叶绿体超微结构、光合色素和叶绿素荧光特性的研究[J]. 植物科学学报, 2020, 38(2):260-268.

    Ji YL, Yang W, Li H, Cao H, Lu L, et al. Study on chloroplast ultrastructure, photosynthetic pigments, and chlorophyll fluorescence characteristics of leaf color mutants in Dendrobium officinale Kimura et Migo[J]. Plant Science Journal, 2020, 38(2):260-268.

    [28] 孙云飞, 张文明, 巢建国, 谷巍, 陆奇杰. 盐胁迫对茅苍术叶绿素含量及叶绿素荧光参数的影响[J]. 江苏农业科学, 2020, 48(4):146-149.

    Sun YF, Zhang WM, Chao JG, Gu W, Lu QJ. Impacts of salt stress on chlorophyll contents and chlorophyll fluorescence parameters of Atractylodes lancea[J]. Jiangsu Agricultural Sciences,2020, 48(4):146-149.

    [29]

    Ohtsuka T, Ito H, Tanaka A. Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts[J]. Plant Physiol, 1997, 113(1):137-147.

    [30] 王玉萍, 郜春晓, 王盛祥, 何晓童. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化[J]. 草业学报, 2020, 29(8):116-125.

    Wang YP, Gao CX, Wang SX, He XT. Changes in photoinhibition and fatty acid composition in the thylakoid membrane of kidney bean leaves under low temperature and weak light stress[J]. Acta Prataculturae Sinica, 2020, 29(8):116-125.

    [31]

    Guo YJ, Lu YP, Goltsev V, Strasser RJ, Kalaji HM, et al. Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR820 signal[J]. Plant Physiol Bioch, 2020, 156:39-48.

    [32]

    Strauss AJ, Krüger GHJ, Strasser RJ, van Heerden PDR. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P[J]. Environ Exp Bot, 2006, 56(2):147-157.

    [33] 刘晓洲, 郭浩轩, 卓定龙, 邓演文, 曾凤. 干旱复水对白姜花光合和叶绿素荧光参数的影响[J]. 中国农学通报, 2021, 37(34):84-89.

    Liu XZ, Guo HX, Zhuo DL, Deng YW, Zeng F. Effects of drought and rewatering on photosynthesis and chlorophyll fluorescence of Hedychium coronarium[J]. Chinese Agricultural Science Bulletin, 2021, 37(34):84-89.

    [34] 张菂, 陈昌盛, 李鹏民, 马锋旺. 利用快速荧光、延迟荧光和820 nm光反射同步测量技术探讨干旱对平邑甜茶叶片光合机构的伤害机制[J]. 植物生理学报, 2013, 49(6):551-560.

    Zhang D, Chen CS, Li PM, Ma FW. Effects of drought on the photosynthetic apparatus in Malus hupehensis leaves explored by simultaneous measurement of prompt fluorescence, delayed fluorescence and modulated light reflection at 820 nm[J]. Plant Physiology Journal, 2013, 49(6):551-560.

    [35] 孙文君, 江晓慧, 付媛媛, 申孝军, 高阳, 王兴鹏. 盐分胁迫对棉花幼苗叶片叶绿素荧光参数的影响[J]. 灌溉排水学报, 2021, 40(7):23-28.

    Sun WJ, Jiang XH, Fu YY, Shen XJ, Gao Y, Wang XP. The effects of salt stress on chlorophyll fluorescence of cotton seedling leaves[J]. Journal of Irrigation and Drai-nage, 2021, 40(7):23-28.

    [36] 李利, 李宏. 干旱和盐胁迫对白榆叶片光系统Ⅱ活力的影响[J]. 东北林业大学学报, 2011, 39(9):31-33.

    Li L, Li H. Effects of NaCl and polyethylene glycol on photosystem Ⅱ activity in Ulmus pumila[J]. Journal of Nor-theast Forestry University, 2011, 39(9):31-33.

    [37]

    Sinha V, Pakshirajan K, Chaturvedi R. Chromium tole-rance, bioaccumulation and localization in plants:an overview[J]. J Environ Manage, 2018, 206:715-730.

    [38]

    Dąbrowski P, Kalaji MH, Baczewska AH, Paẃluskiewicz B, Mastalerczuk G, et al. Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress[J]. J Lumines, 2018, 183:322-333.

    [39]

    El Sabagh A, Hossain A, Islam S, Barutcular C, Hussain S, et al. Drought and salinity stresses in barley:consequences and mitigation strategies[J]. Aust J Crop Sci, 2019, 13(6):810-820.

    [40]

    Huang S, Zuo T, Ni WZ. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem Ⅱ complex under abiotic stresses[J]. Planta, 2020, 251(2):36.

  • 期刊类型引用(1)

    1. 刘洁茹,冯露,林启芳,周杨,池秀凤,蔡明,程堂仁,王佳,张启翔,潘会堂. 紫薇叶片原生质体的分离及瞬时转化. 西北农林科技大学学报(自然科学版). 2023(01): 146-154 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  268
  • HTML全文浏览量:  17
  • PDF下载量:  51
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-07-05
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回