Mapping of quantitative trait loci and development of closely linked markers of flower color in lotus (Nelumbo nucifera Gaertner)
-
摘要: 莲(Nelumbo nucifera Gaertner)花色是决定其观赏价值的重要农艺性状之一,但其分子遗传机制尚不清楚。本研究以莲‘满天星’(红花)为母本,‘巨无霸’(白花)为父本构建F2分离群体。利用简化基因组测序技术(SLAF-seq)构建高密度遗传图谱,根据F2群体连续两年的表型数据,对莲的红花、白花性状进行QTL分析,开发与该性状紧密连锁的PARMS(Penta-primer amplification refractory mutation system,五引物扩增受阻突变体系)分子标记。结果显示:莲的遗传图谱全长为1046.82 cM,包含8个连锁群、共6376个上图标记,两个相邻标记间的平均图距为0.16 cM。在第6连锁群上检测出1个稳定控制莲红花、白花性状的QTL,贡献率为49.957%,于该定位区域预测到18个基因,其中5个为控制莲红花、白花性状的候选基因。同时,开发了3个与莲红花、白花性状紧密连锁的PARMS标记,能有效区分F2群体中的红花和白花表型。Abstract: As one of the key agronomic traits that determine ornamental value, the genetic mechanism of flower color in lotus (Nelumbo nucifera Gaertner) requires further exploration. In this study, an F2 segregating population was obtained with the lotus cultivar ‘Mantianxing’ (red flower) as the female parent and ‘Juwuba’ (white flower) as the male parent. A high-density genetic map of the lotus was constructed using specific locus amplified fragment sequencing (SLAF-Seq). Combined with the phenotypic information of the F2 individuals obtained over two consecutive years, QTL mapping of the flower color trait was carried out. PARMS molecular markers linked to this trait were also developed. The integrated map spanned a genetic distance of 1046.82 cM, which consisted of 6376 SLAF markers on eight linkage groups, with an average genetic distance of 0.16 cM between adjacent markers. A QTL potentially responsible for red and white flower colors was stably detected on the sixth linkage group, with a contribution rate of 49.957%. Eighteen genes were located in the QTL interval, five of which were identified as candidate genes associated with flower color. Three PARMS markers were developed that could be effectively used for genotyping red and white flowers in F2 individuals.
-
Keywords:
- Lotus /
- Flower color /
- QTL mapping /
- SNP markers
-
-
[1] 杨茹涵, 刘进, 李加纳, 钱伟, 梅家琴. 甘蓝花色性状QTL定位及候选基因变异分析[J]. 植物遗传资源学报, 2019, 20(5):1271-1277. Yang RH, Liu J, Li JN, Qian W, Mei JQ. QTL Mapping and variation analysis of candidate gene for flower color in Brassica oleracea L.[J]. Journal of Plant Genetic Resources, 2019, 20(5):1271-1277.
[2] Mol J,Grotewold E,Koes R. How genes paint flowers and seeds[J]. Trends Plant Sci, 1998,3(6):212-217.
[3] Chen MQ,Xu MY,Xiao Y,Cui DD,Qin YQ, et al. Fine mapping identifies SmFAS encoding an anthocyanidin synthase as a putative candidate gene for flower purple color in Solanum melongena L.[J]. Int J Mol Sci, 2018, 19(3):789.
[4] Gitonga VW, Stolker R, Koning-Boucoiran CFS, Aelaei M, Visser RGF, et al. Inheritance and QTL analysis of the determinants of flower color in tetraploid cut roses[J]. Mol Breed, 2016, 36(10):143.
[5] Chen S, Xiang Y, Deng J, Liu YL, Li SH. Simulta-neous analysis of anthocyanin and non-anthocyanin flavonoid in various tissues of different lotus (Nelumbo) cultivars by HPLC-DAD-ESI-MSn[J]. PLoS One, 2013, 8(4):e62291.
[6] Deng J, Chen S, Yin XJ, Wang K, Liu YL, et al. Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars[J]. Food Chem, 2013, 139(1-4):307-312.
[7] Katori M, Watanabe K, Nomura K, Yoneda K. Cultivar differences in anthocyanin and carotenoid pigments in the petals of the flowering lotus (Nelumbo spp.)[J]. J Jpn Soc Horticult Sci, 2002, 71(6):812-817.
[8] Yang RZ, Wei XL, Gao FF, Wang LS, Zhang HJ, et al. Simultaneous analysis of anthocyanins and flavonols in petals of lotus (Nelumbo) cultivars by high-performance liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry[J]. J Chromatogr A, 2009, 1216(1):106-112.
[9] Ming R, Vanburen R, Liu YL, Yang M, Han YP, et al. Genome of the long-living sacred lotus (Nelumbo nuci-fera Gaertn.)[J]. Genome Biol, 2013, 14(5):R41.
[10] Wang Y, Fan GY, Liu YM, Sun FM, Shi CC, et al. The sacred lotus genome provides insights into the evolution of flowering plants[J]. Plant J, 2013, 76(4):557-567.
[11] Deng J, Fu ZY, Chen S, Damaris RN, Wang K, et al. Proteomic and epigenetic analyses of lotus (Nelumbo nucifera) petals between red and white cultivars[J]. Plant Cell Physiol, 2015, 56(8):1546-1555.
[12] Wang YJ, Chen YQ, Yuan M, Xue ZY, Jin QJ, Xu YC. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes in sacred lotus[J]. J Am Soc Hortic Sci, 2016, 141(6):573-582.
[13] Deng J, Li JJ, Su MY, Lin ZY, Chen L, Yang PF. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis[J]. Plant Physiol Biochem, 2021, 158:518-523.
[14] Sun SS, Gugger PF, Wang QF, Chen JM. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.)[J]. PeerJ, 2016, 4:e2369.
[15] Zhu HH, Yang JX, Xiao CH, Mao TY, Zhang J, Zhang HY. Differences in flavonoid pathway metabolites and transcripts affect yellow petal colouration in the aquatic plant Nelumbo nucifera[J]. BMC Plant Biol, 2019, 19(1):277.
[16] Sun XW, Liu DY, Zhang XF, Li WB, Liu H, et al. SLAF-seq:an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3):e58700.
[17] Shi P, Xu Z, Zhang SY, Wang XJ, Ma XF, et al. Construction of a high-density SNP-based genetic map and identification of fruit-related QTLs and candidate genes in peach[Prunus persica (L.) Batsch] [J]. BMC Plant Biol, 2020, 20(1):438.
[18] Wei QZ, Wang WH, Hu TH, Hu HJ, Wang JL, Bao CL. Construction of a SNP-based genetic map using SLAF-Seq and QTL analysis of morphological traits in eggplant[J]. Front Genet, 2020, 11:178.
[19] Zhang XF, Wang GY, Dong TT, Chen B, Du HS, et al. High-density genetic map construction and QTL mapping of first flower node in pepper (Capsicum annuum L.)[J]. BMC Plant Biol, 2019, 19(1):167.
[20] Zhu WY, Huang L, Chen L, Yang JT, Wu JN, et al. A high-density genetic linkage map for cucumber (Cucumis sativus L.):based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber[J]. Front Plant Sci, 2016, 7:437.
[21] 柯卫东,李峰. 莲种质资源描述规范和数据标准[M]. 北京:中国农业出版社, 2005:52-58. [22] Li RQ, Li YR, Kristiansen K, Wang J. SOAP:short oligonucleotide alignment program[J]. Bioinformatics, 2008, 24(5):713-714.
[23] Fang HC, Dong YH, Yue XX, Hu JF, Jiang SH, et al. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature[J]. Plant Cell Environ, 2019, 42(7):2090-2104.
[24] Das PK, Shin DH, Choi SB, Park YI. Sugar-hormone cross-talk in anthocyanin biosynthesis[J]. Mol Cells, 2012, 34(6):501-507.
[25] Yang M, Han YN, Vanburen R, Ming R, Xu LM, et al. Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar[J]. BMC Genom, 2012, 13(1):653.
[26] Zhang Q, Li LT, Vanburen R, Liu YL, Yang M, et al. Optimization of linkage mapping strategy and construction of a high-density American lotus linkage map[J]. BMC Genom, 2014, 15(1):372.
[27] Liu ZW, Zhu HL, Liu YP, Kuang J, Zhou K, et al. 2016. Construction of a high-density, high-quality genetic map of cultivated lotus (Nelumbo nucifera) using next-generation sequencing[J]. BMC Genom, 2016, 17(1):466.
[28] 宋贺云, 王云梦, 邓显豹, 孙恒, 杨美. 分子标记技术在莲研究中的应用与进展[J]. 植物学研究, 2020, 9(4):284-293. Song HY, Wang YM, Deng XB, Sun H, Yang M. Application advance of molecular markers in lotus[J]. Botanical Research, 2020, 9(4):284-293.
[29] Cao DD, Damaris RN, Zhang Y, Liu MH, Li M, Yang PF. Proteomic analysis showing the signaling pathways involved in the rhizome enlargement process in Nelumbo nucifera[J]. BMC Genom, 2019, 20(1):766.
[30] Sun H, Li JJ, Song HY, Yang D, Deng XB, et al. Comprehensive analysis of AGPase genes uncovers their potential roles in starch biosynthesis in lotus seed[J]. BMC Plant Biol, 2020, 20(1):427.
[31] 刘正位, 郭丹丹, 彭静, 朱红莲, 匡晶, 等. 莲子产量相关性状的QTL定位[J]. 园艺学报, 2020, 47(8):1565-1576. Liu ZW, Guo DD, Peng J, Zhu HL, Kuang J, et al. QTL mapping of six seed yield related traits in lotus[J]. Acta Horticulturae Sinica, 2020, 47(8):1565-1576.
[32] 王芸, 刘正位, 匡晶, 季群, 王春丽, 等. 莲重要农艺性状的QTL定位[C]/BaiSL, Tao RY, Tang YX, Yin L, Ma YJ, et al. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear[J]. Plant Biotechnol J, 2019, 17(10):1985-1997. [33] Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis[J]. Plant Physiol, 2006, 140(2):637-646.
[34] 路静, 马齐军, 刘晓, 康慧, 刘亚静, 等. 苹果蔗糖转运蛋白MdSUT2调控花青苷积累的研究[J]. 园艺学报, 2019, 46(1):1-10. Lu J, Ma QJ, Liu X, Kang H, Liu YJ, et al. Studies on the regulation of anthocyanin accumulation by apple sucrose transporter MdSUT2[J]. Acta Horticulturae Sinica, 2019, 46(1):1-10.
[35] BaiSL, Tao RY, Tang YX, Yin L, Ma YJ, et al. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear[J]. Plant Biotechnol J, 2019, 17(10):1985-1997.
[36] Naing AH, Kim CK. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants[J]. Plant Mol Biol, 2018, 98(1-2):1-18.
[37] Zong Y, Zhu XB, Liu ZG, Xi XY, Li GM, et al. Functional MYB transcription factor encoding gene AN2 is associated with anthocyanin biosynthesis in Lycium ruthenicum Murray[J]. BMC Plant Biol, 2019, 19(1):169.
[38] Zhang N, Chen L, Ma S, Wang RF, He Q, et al. Fine mapping and candidate gene analysis of the white flower gene Brwf in Chinese cabbage (Brassica rapa L.)[J]. Sci Rep, 2020, 10(1):6080.
-
期刊类型引用(1)
1. 刘娟,孙恒,邓显豹,杨东,宋贺云,章明华,王雨昕,辛佳,杨辉,杨美. 莲遗传学和分子生物学研究进展. 植物科学学报. 2023(06): 809-819 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 110
- HTML全文浏览量: 2
- PDF下载量: 22
- 被引次数: 3