Ecological function and adaptive significance of staminodes in Delphinium caeruleum Jacq. ex Camb
-
摘要: 以蓝翠雀花(Delphinium caeruleum Jacq. ex Camb) 为材料,通过人工去除退化雄蕊,分析了退化雄蕊去除后,植物的访花昆虫数量、花粉数量和质量、植食者啃食率、坐果率及结籽率的变化,以探究植物退化雄蕊的生态功能及其适应性意义。结果显示,人工去除退化雄蕊后,传粉者的访花次数明显降低,雨水冲刷及阳光直射会导致其花粉数量和活力显著下降。与对照相比,去除退化雄蕊还会造成植株坐果率及结籽率显著降低,而对昆虫啃食率没有显著影响。研究结果说明,蓝翠雀花的退化雄蕊是其吸引传粉昆虫的重要器官,可以有效避免雨水冲刷及阳光直射的损害,从而提高繁殖适合度,但不能阻止植食者对花内器官的啃食,退化雄蕊对于蓝翠雀花应对外界极端环境具有重要的适应意义。Abstract: We analyzed changes in the number of visiting insects, pollen quantity and quality, herbivore eating rate, and fruit and seed set ratios after removal of staminodes in a Delphinium caeruleum Jacq. ex Camb population to explore their ecological function and adaptive significance. Results showed that number of visits was significantly reduced after artificial removal of the staminodes, and pollen number and vitality were significantly reduced by rain and solar radiation. Compared with natural conditions, removing the staminodes also significantly reduced the fruit and seed set ratios, but had no significant effect on the herbivore eating rate. These findings indicate that the staminode is an important organ for D. caeruleum to attract pollinators and can improve reproductive fitness by limiting rain and solar radiation damage, but cannot prevent herbivores from eating the internal flower organs. Thus, the staminode may have important adaptive significance for D. caeruleum to cope with unfavorable environmental conditions.
-
Keywords:
- Delphinium caeruleum /
- Staminodes /
- Ecological function /
- Adaptive significance
-
-
[1] 黄双全, 郭友好. 传粉生物学的研究进展[J]. 科学通报, 2000, 45(3):225-237. Huang SQ, Guo YH. New advances in pollination biology and the studies in China[J]. Chinese Science Bulletin, 2000, 45(16):1441-1447. [2] 黄双全. 植物与传粉者相互作用的研究及其意义[J]. 生物多样性, 2007, 15(6):569-575. Huang SQ. Studies on plant-pollinator interaction and its significances[J]. Biodiversity Science, 2007, 15(6):569-575.
[3] Hattori M, Nagano Y, Itino T. Geographic variation in flo-wer size and flower-visitor composition of two bumblebee-pollinated, spring-flowering herbs, Lamium album L. var. barbatum (Lamiaceae) and Meehania urticifolia (La-miaceae)[J]. Amer J Plant Sci, 2015, 6(5):737-735.
[4] Cariveau D, Irwin RE, Brody AK, Garcia-Mayeya LS, von der Ohe A. Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits[J]. Oikos, 2004, 104(1):15-26.
[5] Zhang C, Irwin RE, Wang Y, He YP, Yang YP, Duan YW. Selective seed abortion induced by nectar robbing in the selfing plant Comastoma pulmonarium[J]. New Phytol, 2011, 192(1):249-255.
[6] Hase AV, Cowling RM, Ellis AG. Petal movement in cape wildflowers protects pollen from exposure to moisture[J]. Plant Ecol, 2006, 184(1):75-87.
[7] Zhang C, Yang YP, Duan YW. Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants[J]. Sci Rep, 2014, 4. 4520.
[8] 侯勤正, 任昱兰, 文静, 赵东光, 王思源. 灌木铁线莲繁育系统特征及其花下垂现象的适应性意义[J]. 西北植物学报, 2016, 36(11):2283-2290. Hou QZ, Ren YL, Wen J, Zhao DG, Wang SY. Breeding system characters and the adaptive significances of downward orientation flowers in Clematis fruticosa Turcz.[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(11):2283-2290.
[9] Appleton AD, Schenk JJ. Evolution and development of staminodes in Paronychia (Caryophyllaceae)[J]. Int J Plant Sci, 2021, 182(5):377-388.
[10] 陈珊, 任宗昕, 王红, 吴丁. 被子植物退化雄蕊的功能类型及其意义[J]. 植物分类与资源学报, 2015, 37(6):683-692. Chen S, Ren ZX, Wang H, Wu D. The classification and functional significance of staminodes in angiosperms[J]. Plant Diversity and Resources, 2015, 37(6):683-692.
[11] Li BX, Xu FX. Homology and functions of inner staminodes in Anaxagorea javanica (Annonaceae)[J]. AoB Plants, 2020, 12(6):plaa057.
[12] Wang ML, Huang SY, Li MR, McKey D, Zhang L. Stami-nodes influence pollen removal and deposition rates in nectar-rewarding self-incompatible Phanera yunnanensis (Caesalpinioideae)[J]. J Trop Ecol, 2019, 35(1):34-42.
[13] 张婵, 查绍琴, 杨永平, 段元文. 蓝翠雀花退化雄蕊上的黄色髯毛对其繁殖成功的影响[J]. 生物多样性, 2012, 20(3):348-353. Zhang C, Zha SQ, Yang YP, Duan YW. Effects of the yellow barbs of the staminodes on reproductive success of Delphinium caeruleum (Ranunculaceae)[J]. Biodiversity Science, 2012, 20(3):348-353.
[14] Edens-Meier R, Westhus E, Bernhardt P. Floral biology of large-flowered Thelymitra species (Orchidaceae) and their hybrids in Western Australia[J]. Telopea, 2013, 15:165-183.
[15] Bänziger H, Sun HQ, Luo YB. Pollination of a slippery lady slipper orchid in south-west China:Cypripedium guttatum (Orchidaceae)[J]. Bot J Linn Soc, 2005, 148(3):251-264.
[16] Classen-Bockhoff R, Heller A. Floral synorganization and secondary pollen presentation in four marantaceae from costa Rica[J]. Int J Plant Sci, 2008, 169(6):745-760.
[17] Li P, Luo Y, Bernhardt P, Kou Y, Perner H. Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae):the roles of generalist attractants versus restrictive floral architecture[J]. Plant Biol, 2008, 10(2):220-230.
[18] Ley AC, Claßen-Bockhoff R. Pollination syndromes in African Marantaceae[J]. Ann Bot, 2009, 104(1):41-56.
[19] 张勃, 孙杉, 张志强, 李庆军. 杠杆状雄蕊及其进化生态学意义[J]. 植物生态学报, 2010, 34(1):89-99. Zhang B, Sun S, Zhang ZQ, Li QJ. A review of the evolutionary and ecological significance of lever-like stamens[J]. Chinese Journal of Plant Ecology, 2010, 34(1):89-99.
[20] Endress PK. The role of inner staminodes in the floral display of some relic Magnoliales[J]. Plant Syst Evol, 1984, 146(3-4):269-282.
[21] Rodríguez-Riaño T, Valtueña FJ, López J, Navarro-Pérez ML, Pérez-Bote JL, Ortega-Olivencia A. Evolution of the staminode in a representative sample of Scrophularia and its role as nectar safeguard in three widespread species[J]. Sci Nat, 2015, 102(5-6):37.
[22] Wang WC, Fu DZ, Li LQ, Bartholomew B, Brach AR, et al. Ranunculaceae[M]/Dafni A. Autumnal and winter pollination adaptations under Mediterranean conditions[J]. Bocconea, 1996, 5:171-181.
[23] 张婵, 安宇梦, Jäschke Y, 王林林, 周知里, 等. 青藏高原及周边高山地区的植物繁殖生态学研究进展[J]. 植物生态学报, 2020, 44(1):1-21. Zhang C, An YM, Jäschke Y, Wang LL, Zhou ZL, et al. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands[J]. Chinese Journal of Plant Ecology, 2020, 44(1):1-21.
[24] Wang Y, Meng LH, Yang YP, Duan YW. Change in floral orientation in Anisodus luridus (Solanaceae) protects pollen grains and facilitates development of fertilized ovules[J]. Amer J Bot, 2010, 97(10):1618-1624.
[25] Dafni A. Autumnal and winter pollination adaptations under Mediterranean conditions[J]. Bocconea, 1996, 5:171-181.
[26] Mao YY, Huang SQ. Pollen resistance to water in 80 angio-sperm species:flower structures protect rain-susceptible pollen[J]. New Phytol, 2009, 183(3):892-899.
[27] Armstrong JE, Irvine AK. Functions of staminodia in the beetle-pollinated flowers of Eupomatia laurina[J]. Biotropica, 1990, 22(4):429-431.
[28] Botnaru L, Schenk JJ. Staminode evolution in Mentzelia section Bartonia (Loasaceae) and its impact on insect visitation rates[J]. Bot J Linn Soc, 2019, 190(2):151-164.
[29] Weberling F. Morphology of Flowers and Inflorescences[M]. Cambridge:Cambridge University Press, 1989:405.
[30] Corbet SA. Pollination and the weather[J]. Isr J Bot, 1990, 39(1-2):13-30.
[31] Aizen MA. Down-facing flowers, hummingbirds and rain[J]. Taxon, 2003, 52(4):675-680.
[32] Sprengel CK. Das Entdeckte Geheimniss der Natur im Bau und in der Befruchtung der Blumen[M]. Berlin:Bei Friedrich Vieweg Dem Aeltern,1793:1-431.
[33] Fulton TW. The inflorescence, floral structure and fertilisa-tion of Scrophularia aquatica and S. nodosa[J]. Transactions of the Botanical Society of Edinburgh, 1886, 16(1-4):379-389.
[34] Aylor DE. Survival of maize (Zea mays) pollen exposed in the atmosphere[J]. Agric Forest Meteor, 2004, 123(3-4):125-133.
[35] Sato S, Peet MM, Thomas JF. Determining critical pre-and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures[J]. J Exp Bot, 2002, 53(371):1187-1195.
[36] Feng HY, An LZ, Tan LL, Hou ZD, Wang XL. Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro[J]. Environ Exp Bot, 2000, 43(1):45-53.
[37] Pressman E, Moshkovitch H, Rosenfeld K, Shaked R, Gamliel B, Aloni B. Influence of low night temperatures on sweet pepper flower quality and the effect of repeated pollinations, with viable pollen, on fruit setting[J]. J Hortic Sci Biotechnol, 1998, 73(1):131-136.
[38] Von Hase A, Cowling RM, Ellis AG. Petal movement in cape wildflowers protects pollen from exposure to moisture[J]. Plant Ecol, 2006, 184(1):75-87.
[39] Wu JY, Jin C, Qu HY, Tao ST, Xu GH, et al. Low tempe-rature inhibits pollen viability by alteration of actin cytoske-leton and regulation of pollen plasma membrane ion channels in Pyrus pyrifolia[J]. Environ Exp Bot, 2012, 78:70-75.
[40] Prokop P, Jersáková J, Fančovičová J, Pipíška M. Flower closure enhances pollen viability in Crocus discolor G. Reuss[J]. Flora, 2019, 250:68-71.
[41] Bynum MR, Smith WK. Floral movements in response to thunderstorms improve reproductive effort in the alpine species Gentiana algida (Gentianaceae)[J]. Amer J Bot, 2001, 88(6):1088-1095.
[42] Van Doorn WG, van Meeteren U. Flower opening and closure:a review[J]. J Exp Bot, 2003, 54(389):1801-1812.
[43] He YP, Duan YW, Liu JQ, Smith WK. Floral closure in response to temperature and pollination in Gentiana straminea Maxim. (Gentianaceae), an alpine perennial in the Qinghai-Tibetan Plateau[J]. Plant Syst Evol, 2005, 256(1-4):17-33.
[44] Zhang S, Ai HL, Yu WB, Wang H, Li DZ. Flower heliotropism of Anemone rivularis (Ranunculaceae) in the Himalayas:effects on floral temperature and reproductive fitness[J]. Plant Ecol, 2010, 209(2):301-312.
[45] Hou QZ, Zhao X, Pang X, Duan ML, Ehmet N, et al. Why flowers close at noon? A case study of an alpine species Gentianopsis paludosa (Gentianaceae)[J]. Ecol Evol, 2022, 12(1):e8490.
[46] Guimarães PR, Pires MM, Jordano P, Bascompte J, Thompson JN. Indirect effects drive coevolution in mutua-listic networks[J]. Nature, 2017, 550(7677):511-514.
[47] Kalisz S, Vogler DW, Hanley KM. Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating[J]. Nature, 2004, 430(7002):884-887.
[48] Gervasi DDL, Schiestl FP. Real-time divergent evolution in plants driven by pollinators[J]. Nat Commun, 2017, 8:14691.
[49] Agrawal AA, Hastings AP, Johnson MTJ, Maron JL, Salminen JP. Insect herbivores drive real-time ecological and evolutionary change in plant populations[J]. Science, 2012, 338(6103):113-116.
[50] Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA. Natural enemies drive geographic variation in plant defenses[J]. Science, 2012, 338(6103):116-119.
[51] Cronquist A. An Integrated System of Classification of Flo-wering Plants[M]. New York:Columbia University Press, 1981:599-600.
[52] Brayshaw TC. Buttercups, Waterlilies and their Relatives in British Columbia[M]. New York:Columbia University Press, 1989:1-253.
[53] Prance GT. The pollination and androphore structure of some Amazonian lecythidaceae[J]. Biotropica, 1976, 8(4):235-241.
[54] Plitmann U, Raven PH, Breedlove DE. The systematics of Lopezieae (Onagraceae)[J]. Ann Mo Bot Gard, 1973, 60(2):478-563.
计量
- 文章访问数: 154
- HTML全文浏览量: 7
- PDF下载量: 34