Advances in the study of calcium signaling-mediated nitrate signaling in plants
-
摘要: 硝酸盐不仅是植物的主要氮源,而且是植物极为重要的信号分子,参与众多生理生化反应、代谢过程,调控植物的生长和发育。研究发现钙信号参与初级硝酸盐响应过程,然而关于钙信号如何参与硝酸盐信号的感知和硝酸盐信号的传递过程尚未清楚。本文综述了具有钙离子通道活性的环核苷酸门控通道与硝酸盐转运体复合体(Cyclic nucleotide-gated channel 15-nitrate transceptor 1.1,CNGC15-NRT1.1)、钙调磷酸酶B类蛋白(Calcineurin B-like protein,CBL)、CBL互作蛋白激酶(CBL-interacting protein kinases,CIPKs)、钙依赖蛋白激酶(Calcium-dependent protein kinases,CPKs)和磷脂酶C (Phospholipase C,PLC)如何从细胞膜到细胞核参与植物的硝酸盐信号过程,从而形成相对完整的硝酸盐信号网络。并对未来钙信号如何连接上游硝酸盐传感器复合体与下游硝酸盐信号通路的多个传感器,从而完成营养生长调控网络的研究方向进行了展望。
-
关键词:
- 钙信号 /
- 硝酸盐信号 /
- CNGC15-NRT1.1 /
- CPK /
- 初级硝酸盐响应
Abstract: Nitrate is not only the main nitrogen source in plants, but also an extremely important signaling molecule. Nitrate signaling integrates and coordinates the expression of a wide range of genes, metabolic pathways, and ultimately, plant growth and development. Calcium signaling is involved in the primary nitrate response pathway. However, how calcium signaling mediates nitrate sensing and signaling from the extracellular space to the cytoplasm and nucleus is much less understood. In this review, we describe how cyclic nucleotide-gated channel 15-nitrate transceptor 1.1 (CNGC15-NRT1.1), calcineurin B-like protein (CBL), CBL-interacting protein kinases (CIPKs), calcium-dependent protein kinases (CPKs), and phospholipase C (PLC) act as key players and the potential backbone of the nitrate-signaling pathway, from the plasma membrane to the nucleus. We also discuss future directions for studying how calcium signaling interconnects the upstream nitrate sensor complex with downstream multiple sensors of the nitrate-signaling pathway to complete nutrient-growth regulatory networks.-
Keywords:
- Calcium signaling /
- Nitrate signaling /
- CNGC15-NRT1.1 /
- CPK /
- Primary nitrate response
-
-
[1] 江华波, 王盛锋, 杨峰, 张中华, 邱亨池, 等. 不同浓度硝态氮供应下小麦生长,硝态氮累积及根系钙信号特征[J]. 植物科学学报, 2015, 33(3):362-368. Jiang HB, Wang SF, Yang F, Zhang ZH, Qiu HC, et al. Plant growth, nitrate content and Ca signaling in wheat(Triticum aestivum L.) roots under different nitrate supply[J]. Plant Science Journal, 2015, 33(3):362-368.
[2] O'Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, et al. Nitrate transport, sensing and responses in plants[J]. Mol Plant, 2016, 9(6):837-856.
[3] Yuan S, Zhang ZW, Zheng C, Zhao ZY, Wang Y, et al. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering[J]. Proc Natl Acad Sci USA, 2016, 113(27):7661-7666.
[4] Vidal EA, Moyano TC, Canales J, Gutiérrez RA. Nitrogen control of developmental phase transitions in Arabidopsis thaliana[J]. J Exp Bot, 2014, 65(19):5611-5618.
[5] Castro MI, Loef I, Bartetzko L, Searle I, Coupland G, et al. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways[J]. Planta, 2011, 233(3):539-552.
[6] Liu L, Gao HH, Li SX, Han Z, Li B. Calcium signaling networks mediate nitrate sensing and responses in Arabidopsis[J]. Plant Signal Behav, 2021,16(10):1938441.
[7] Simeunovic A, Mair A, Wurzinger B, Teige M. Know where your clients are:subcellular localization and targets of calcium-dependent protein kinases[J]. J Exp Bot, 2016, 67(13):3855-3872.
[8] Ebert DH, Greenberg ME. Activity-dependent neuronal signalling and autism spectrum disorder[J]. Nature, 2013, 493(7432):327-337.
[9] Dodd AN, Kudla J, Sanders D. The language of calcium signaling[J]. Annu Rev Plant Biol, 2010, 61:593-620.
[10] 邹娟子, 胡诗琦, 王碧莹, 景沛, 杨俊, 等. 植物钙结合蛋白与钙离子结合鉴定技术的研究进展[J]. 植物科学学报, 2014, 32(6):661-670. Zou JZ, Hu SQ, Wang BY, Jing P, Yang J, et al. Recent advances in detection techniques of binding plant calcium-binding proteins to calcium ions[J]. Plant Science Journal, 2014, 32(6):661-670.
[11] Riveras E, Alvarez JM, Vidal EA, Oses C, Vega A, et al. The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis[J]. Plant Physiol, 2015, 169(2):1397-1404.
[12] Sueyoshi K, Mitsuyama T, Sugimoto T, Kleinhofs A, Warner RL, et al. Effects of inhibitors for signaling components on the expression of the genes for nitrate reductase and nitrite reductase in excised barley leaves[J]. Soil Sci Plant Nutr, 1999, 45(4):1015-1019.
[13] Sakakibara H, Kobayashi K, Deji A, Sugiyama T. Partial characterization of the signaling pathway for the nitrate-dependent expression of genes for nitrogen-assimilatory enzymes using detached maize leaves[J]. Plant Cell Physiol, 1997, 38(7):837-843.
[14] Hu B, Wang W, Ou SJ, Tang JY, Li H, et al. Variation in NRT1. 1B contributes to nitrate-use divergence between rice subspecies[J]. Nat Genet, 2015, 47(7):834-840.
[15] Hu B, Jiang Z, Wei W, Qiu YH, Zhang ZH, et al. Nitrate-NRT1. 1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nat Plants, 2019, 5(4):401-413.
[16] Hashimoto K, Kudla J. Calcium decoding mechanisms in plants[J]. Biochimie, 2011, 93(12):2054-2059.
[17] Hamilton ES, Schlegel AM, Haswell ES. United in diversity:mechanosensitive ion channels in plants[J]. Annu Rev Plant Biol, 2015, 66:113-137.
[18] Sukharev S, Sachs F. Molecular force transduction by ion channels:diversity and unifying principles[J]. J Cell Sci, 2012, 125(13):3075-3083.
[19] Tang RJ, Wang C, Li KL, Luan S. The CBL-CIPK calcium signaling network:unified paradigm from 20 years of discoveries[J]. Trends Plant Sci, 2020, 25(6):604-617.
[20] 刘亚琪, 王文颖, 崔彦农,郭欢, 李孟湛, 王锁民. 霸王环核苷酸门控通道基因[STXFX]ZxCNGC5[STXFZ]的克隆及表达模式分析[J]. 植物生理学报, 2018, 54(1):157-164. Liu YQ, Wang WY, Cui YN, Guo H, Li MZ, Wang SM. Cloning and expression analysis of cyclic nucleotide-gated channels gene[STXFX]ZxCNGC5[STXFZ] from Zygophyllum xanthoxylum[J]. Plant Physiology Jouranl, 2018, 54(1):157-164.
[21] Wang X, Feng C, Tian L, Hou C, Tian W, et al. A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis[J]. Mol Plant, 2021, 14(5):774-786.
[22] Hu HC, Wang YY, Tsay YF. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response[J]. Plant J, 2009, 57(2):264-278.
[23] Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6):1184-1194.
[24] Liu KH, Niu Y, Konishi M, Wu Y, Du H, et al. Discovery of nitrate-cpk-nlp signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654):311-316.
[25] Fan X, Naz M, Fan X, Xuan W, Miller AJ, et al. Plant nitrate transporters:from gene function to application[J]. J Exp Bot, 2017, 68(10):2463-2475.
[26] Zhang X, Cui Y, Yu M, Su B, Gong W, et al. Phosphory-lation-mediated dynamics of nitrate transceptor NRT1. 1 regulate auxin flux and nitrate signaling in lateral root growth[J]. Plant Physiol, 2019, 181(2):480-498.
[27] Léran S, Edel KH, Pervent M, Hashimoto K, Corratgé-Faillie C, et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid[J]. Sci Signal, 2015, 8(375):ra43.
[28] Ma Q, Tang RJ, Zheng XJ, Wang SM, Luan S. The cal- cium sensor CBL7 modulates plant responses to low nitrate inArabidopsis[J]. Biochem Biophys Res Commun, 2015, 468(1-2):59-65.
[29] Yang J, Deng X, Wang X, Wang JZ, Du SY, et al. The calcium sensor oscbl1 modulates nitrate signaling to regulate seedling growth in rice[J]. PLoS One, 2019, 14(11):e0224962.
[30] Zhang HM, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science, 1998, 279(5349):407-409.
[31] Gan Y, Bernreiter A, Filleur S, Abram B, Forde BG. Overexpressing the ANR1 MADS-Box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development[J]. Plant Cell Physiol, 2012, 53(6):1003-1016.
[32] Tuteja N, Sopory SK. Plant signaling in stress:G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases[J]. Plant Signal Behav, 2008, 3(2):379-386.
[33] Singh A, Bhatnagar N, Pandey A, Pandey GK. Plant phospholipase C family:regulation and functional role in lipid signaling[J]. Cell Calcium, 2015, 58(2):139-146.
[34] Rupwate SD, Rajasekharan R. Plant phosphoinositide-specific phospholipase C:an insight[J]. Plant Signal Behav, 2012, 7(10):1281-1283.
[35] Vert G, Chory J. A toggle switch in plant nitrate uptake[J]. Cell, 138(6):1064-1066.
[36] Wang C, Zhang W, Li Z, Zhen L, Bi YJ, et al. Fip1 plays an important role in nitrate signaling and regulates cipk8 and cipk23 expression in Arabidopsis[J]. Front Plant Sci, 2018, 9:593.
[37] Hunt AG. The Arabidopsis polyadenylation factor subunit CPSF30 as conceptual link between mRNA polyadenylation and cellular signaling[J]. Curr Opin Plant Biol, 2014, 21:128-132.
[38] Krouk G. Nitrate signalling:calcium bridges the nitrate gap[J]. Nat Plants, 2017, 3:17095
[39] Wang YY, Cheng YH, Chen KE, Tsay YF. Nitrate transport, signaling, and use efficiency[J]. Annu Rev Plant Biol, 2018, 69:85-122.
[40] Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, et al. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1. 1[J]. Nat Plants, 2015, 1:15015.
[41] Edel KH, Kudla J. Integration of calcium and ABA signaling[J]. Curr Opin in Plant Biol, 2016, 33:83-91.
[42] Ristova D, Carré C, Pervent M, Medici A, Kim GJ, et al. Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root[J]. Sci Signal, 2016, 9(451):rs13.
[43] Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways[J]. Nature, 2015, 517(7534):302-310.
[44] Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants[J]. Science, 1996, 274(5294):1900-1902.
[45] Kudla J, Becker D, Grill E, Hedrich R, Hippler M, et al. Advances and current challenges in calcium signaling[J]. New Phytol, 2018, 218(2):414-431.
[46] Canales J, Contreras-López O, Álvarez JM, Gutiérrez RA. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana[J]. Plant J, 2017, 92(2):305-316.
[47] Guan P, Ripoll JJ, Wang R, Vuong L, Bailey-Steinitz LJ, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proc Natl Acad Sci USA, 2017, 114(9):2419-2424.
[48] Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, et al. Nitrate controls root development through post-transcriptional regulation of the NRT1. 1/NPF6. 3 transporter/sensor[J]. Plant Physiol, 2016, 172(2):1237-1248.
[49] Chen X, Yao Q, Gao X, Jiang CF, Harberd NP, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Curr Biol, 2016, 26(5):640-646.
[50] Vidal EA, Álvarez JM, Moyano TC, Gutiérrez RA. Transcriptional networks in the nitrate response of Arabidopsis thaliana[J]. Curr Opin Plant Biol, 2015, 27:125-132.
[51] Zhong L, Chen D, Min D, Li W, Xu Z, et al. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana[J]. Biochem Biophys Res Commun, 2015, 457(3):433-439.
[52] Alvarez JM, Riveras E, Vidal EA, Gras DE, Contreras-López O, et al. Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots[J]. Plant J, 2014, 80(1):1-13.
[53] Guan P, Wang R, Nacry P, Breton G, Kay SA, et al. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway[J]. Proc Natl Acad Sci USA, 2014, 111(42):15267-15272.
-
期刊类型引用(2)
1. 刘晓晨,王树凤,张慧萍,张建锋. 抗盐剂对盐胁迫下南瓜种子萌发和幼苗生长的影响. 福建农林大学学报(自然科学版). 2024(05): 577-586 . 百度学术
2. 王琛,陶烨,韩艳秋,张锐,高雅,李莉峰. ~(60)Co-γ辐照蓝莓钙形态和亚细胞钙分布对果实硬度的影响. 核农学报. 2023(07): 1378-1384 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 395
- HTML全文浏览量: 15
- PDF下载量: 275
- 被引次数: 5