高级检索+

模拟大气细颗粒物中镉沉降对小白菜的毒性效应研究

查燕, 汤婕, 阮松林

查燕, 汤婕, 阮松林. 模拟大气细颗粒物中镉沉降对小白菜的毒性效应研究[J]. 植物科学学报, 2022, 40(1): 96-104. DOI: 10.11913/PSJ.2095-0837.2022.10096
引用本文: 查燕, 汤婕, 阮松林. 模拟大气细颗粒物中镉沉降对小白菜的毒性效应研究[J]. 植物科学学报, 2022, 40(1): 96-104. DOI: 10.11913/PSJ.2095-0837.2022.10096
Zha Yan, Tang Jie, Ruan Song-Lin. Toxic effects of cadmium deposition on pakchoi (Brassica rapa var. chinensis (L.) Kitamura) seedlings exposed to simulated atmospheric fine particulate matter[J]. Plant Science Journal, 2022, 40(1): 96-104. DOI: 10.11913/PSJ.2095-0837.2022.10096
Citation: Zha Yan, Tang Jie, Ruan Song-Lin. Toxic effects of cadmium deposition on pakchoi (Brassica rapa var. chinensis (L.) Kitamura) seedlings exposed to simulated atmospheric fine particulate matter[J]. Plant Science Journal, 2022, 40(1): 96-104. DOI: 10.11913/PSJ.2095-0837.2022.10096
查燕, 汤婕, 阮松林. 模拟大气细颗粒物中镉沉降对小白菜的毒性效应研究[J]. 植物科学学报, 2022, 40(1): 96-104. CSTR: 32231.14.PSJ.2095-0837.2022.10096
引用本文: 查燕, 汤婕, 阮松林. 模拟大气细颗粒物中镉沉降对小白菜的毒性效应研究[J]. 植物科学学报, 2022, 40(1): 96-104. CSTR: 32231.14.PSJ.2095-0837.2022.10096
Zha Yan, Tang Jie, Ruan Song-Lin. Toxic effects of cadmium deposition on pakchoi (Brassica rapa var. chinensis (L.) Kitamura) seedlings exposed to simulated atmospheric fine particulate matter[J]. Plant Science Journal, 2022, 40(1): 96-104. CSTR: 32231.14.PSJ.2095-0837.2022.10096
Citation: Zha Yan, Tang Jie, Ruan Song-Lin. Toxic effects of cadmium deposition on pakchoi (Brassica rapa var. chinensis (L.) Kitamura) seedlings exposed to simulated atmospheric fine particulate matter[J]. Plant Science Journal, 2022, 40(1): 96-104. CSTR: 32231.14.PSJ.2095-0837.2022.10096

模拟大气细颗粒物中镉沉降对小白菜的毒性效应研究

基金项目: 

国家自然科学基金项目(51809001);浙江省自然科学基金(LQ20C03007);杭州市农业科学研究院科技创新基金(2021HNCT-06)。

详细信息
    作者简介:

    查燕(1989-),女,博士,助理研究员,研究方向为污染生态学(E-mail:ecosciyanzha@163.com)。

    通讯作者:

    阮松林,njqh1989@163.com

  • 中图分类号: QX513;X171.5

Toxic effects of cadmium deposition on pakchoi (Brassica rapa var. chinensis (L.) Kitamura) seedlings exposed to simulated atmospheric fine particulate matter

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (51809001), Natural Science Foundation of Zhejiang Province (LQ20C03007), and Science and Technology Innovation Fund of Hangzhou Academy of Agricultural Sciences (2021HNCT-06).

  • 摘要: 为探究大气细颗粒物中镉(Cadmium,Cd)沉降对小白菜(Brassica rapa var.chinensis(L.) Kitamura)的毒性效应,本研究模拟不同浓度梯度大气细颗粒物中镉沉降(0、150、300和500 μg/m3),分别代表对照、轻度、重度和严重污染,检测幼苗受胁迫后的生长状况、叶绿素相对含量(SPAD)、抗氧化酶活性、丙二醛(MDA)及体内Cd含量。结果显示:在处理第7 d时,3种污染处理均提高了小白菜茎叶长、根长和鲜重,但到第19 d,严重污染处理显著降低了茎叶长、根长和鲜重,较对照分别下降了8.05%、13.82%和9.80%;整个试验期间,重度和严重污染均显著降低SPAD,在第19 d时,严重污染处理组SPAD较对照降低了17.54%;3种污染浓度均显著提高了MDA含量和过氧化物酶(POD)活性;小白菜地上部分Cd积累量随污染浓度的增加而递增。研究结果表明,大气细颗粒物中镉沉降显著影响小白菜生长、叶绿素相对含量、抗氧化酶系统及Cd的累积。
    Abstract: This study investigated the toxic effects of different concentrations and gradients of cadmium (Cd) (0, 150, 300, and 500 μg/m3) in fine particulate matter following deposition on pakchoi (Brassica rapa var. chinensis (L.) Kitamura). After treatment, the growth status, relative chlorophyll content (SPAD), antioxidant enzyme activity, malondialdehyde (MDA) content, and heavy metal enrichment in pakchoi seedlings were measured. Results showed that mild, heavy, and severe concentrations of Cd deposition in atmospheric fine particulate matter initially promoted stem, root, and leaf length, and fresh weight of pakchoi on day 7. On day 19, compared with the control, the severe pollution conditions significantly reduced stem and leaf length, root length, and fresh weight of pakchoi by 8.05%, 13.82%, and 9.80%, respectively. During the whole experimental period, severe pollution significantly reduced the SPAD of pakchoi. On day 19, compared with the control, the SPAD of pakchoi under severe pollution conditions decreased significantly by 17.54%. Mild, heavy, and severe concentrations of Cd in fine particulate matter significantly increased MDA content and peroxidase (POD) activity. Furthermore, Cd accumulation in the aboveground parts of pakchoi increased with the increase in Cd concentration, and Cd accumulation was the highest under severe pollution conditions. These results indicated that Cd deposition in fine particulate matter significantly affects growth, SPAD, antioxidant enzymes, and Cd accumulation in pakchoi.
  • [1] 侯艳军. 准东地区降尘-土壤-植物重金属迁移过程及生态效应研究[D]. 乌鲁木齐:新疆大学, 2015.
    [2]

    Harguinteguy CA, Cofré MN, Fernández-Cirelli A, Pignata ML. The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals[J]. Microchem J, 2016(124):228-234.

    [3]

    Tabatabaei T, Karbassi AR, Moatar F, Monavari SM. Geospatial patterns and background levels of heavy metal in deposited particulate matter in Bushehr, Iran[J]. Arab J Geosci, 2015, 8:2081-2093.

    [4]

    Xiong TT, Leveque T, Austruy A, Monavari SM. Foliar uptake and metal (loid) bioaccessibility in vegetables exposed to particulate matter[J]. Environ Geochem Health, 2014, 36:897-909.

    [5] 柯盛, 张际标, 孙省利, 谢群. 珠江口沉积物重金属源解析及富集与生物毒性的关系[J]. 广东海洋大学报, 2017, 37(4):69-77.

    Ke S, Zhang JB, Sun SL, Xie Q. The source characteristics and the relationship between enrichment and biological and toxicity on heavy metals in surface sediment of Pearl river estuary[J]. Journal of Guangdong Ocean University, 2017, 37(4):69-77.

    [6]

    Wang BQ, Liu JF, Liu BW, Niu HH, Chen RH, et al. Personal exposure to PM2.5 associated with heavy metals in four travel modes of Tianjin during the summer season[J]. Environ Sci Pollut Res, 2017, 24(7):6667-6678.

    [7]

    Kong S, Lu B, Ji Y, Zhao X, Bai Z, et al. Risk assessment of heavy metals in road and soil dusts within PM2.5, PM 10 and PM100 fractions in Dongying city, Shandong Province, China[J]. J Environ Monitor, 2012, 14(3):791-803.

    [8]

    Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, et al. Cadmium stress in rice:toxic effects, tolerance mechanisms, and management:a critical review[J]. Environ Sci Pollut Res, 2016, 23:17859-17879.

    [9]

    Baycu G, Gevrek-Kürüm N, Moustaka J, Csatári I, Rognes SE, Moustakas M. Cadmium-zinc accumulation and photosystem Ⅱ responses of Noccaea caerulescens to Cd and Zn exposure[J]. Environ Sci Pollut Res, 2017, 24:2840-2850.

    [10]

    Rehman MZU, Rizwan M, Ali S, Naeem A, Yousaf B, et al. A field study investigating the potential use of phosphorus combined with organic amendments on cadmium accumulation by wheat and subsequent rice[J]. Arab J Geosci, 2018, 11:1-10.

    [11]

    Nordberg GF. Cadmium and health in the 21st century-historical remarks and trends for the future[J]. Biometals, 2004, 17(5):485-489.

    [12] 邵锋. 园林树木对PM2.5等大气颗粒物浓度和成分的影响及滞尘效应研究——以浙江农林大学为例[D]. 北京:北京林业大学, 2020.
    [13] 陈玉艳. 北京市典型区域主要树种调节空气质量生态功能效应[D]. 北京:北京农学院, 2019.
    [14]

    Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, et al. Foliar or root exposures to smelter particles:Consequences for lead compartmentalization and speciation in plant leaves[J]. Sci Total Environ, 2014, 476-477:667-676.

    [15]

    Witherspoon JP, Taylor FG Jr. Retention of a fallout simulant containing 143Cs by pine and oak tree[J]. Health Phys, 1969, 17(6):825-829.

    [16] 王京文, 谢国雄, 章明奎. 大气沉降对萝卜地上和地下部分铅镉汞砷积累的影响[J]. 土壤通报, 2018, 49(1):184-190.

    Wang JW, Xie GX, Zhang MK. Effects of atmospheric deposition on accumulation of lead, cadmium, mercury and arsenic in aboveground and underground parts of radish[J]. Chinese Journal of Soil Science, 2018, 49(1):184-190.

    [17] 潘如圭. 作物对大气源重金属的吸收和转移[J]. 农业环境科学学报, 1984(6):10-12.

    Pan RG. Absorption and transfer of heavy metals from atmospheric sources by crops[J]. Journal of Agro-Environment Science, 1984(6):10-12.

    [18] 章明奎, 刘兆云, 周翠. 铅锌矿区附近大气沉降对蔬菜中重金属积累的影响[J]. 浙江大学学报(农业与生命科学版), 2010, 36(2):221-229.

    Zhang MK, Liu ZY, Zhou C. The effect of atmospheric deposition on heavy metal accumulation in vegetable crop neat lead-zinc mine[J]. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2010, 36(2):221-229.

    [19] 龙思斯, 宋正国, 雷鸣, 喻理, 王艺康, 等. 不同外源镉对水稻生长和富集镉的影响研究[J]. 农业环境科学学报, 2016, 35(3):419-424.

    Long SS, Song ZG, Lei M, Yu L, Wang YK, et al. Growth and Cd accumulation of rice (Oryza sativa L.) grown in soils amended with Cd from different pollution sources[J]. Journal of Agro-Environment Science, 2016, 35(3):419-424.

    [20]

    Fernández Espinosa AJ, Oliva SR. The composition and relationships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L.[J]. Chemosphere, 2006, 62(10):1665-1672.

    [21]

    Hirano T, Kiyota M, Aiga I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants[J]. Environ Pollut, 1995, 89(3):255-261.

    [22]

    McIlveen WD, Cole H. Influence of zinc on development of the endomycorrhizal fungus Glomus mosseae and its mediation of phosporus uptake by glycine max ‘Amsoy 71’[J]. Agr & Environ, 1979, 4(4):245-256.

    [23] 翟振, 张艳玲, 杨欣, 王爱国, 戴华鑫. 大气沉降对烟叶重金属含量的影响及溯源分析[J]. 烟草科技, 2019, 52(6):9-15.

    Zhai Z, Zhang YL, Yang X, Wang AG, Dai HX. Effect of atmospheric deposition on heavy metal contents in tobacco (Nicotiana tabacum L.) leaves and traceability analysis[J]. Tobacco Science & Technology, 2019, 52(6):9-15.

    [24] 谭长强, 何琴飞, 秦玉燕, 申文辉, 刘秀, 曹艳云. 施氮对镉胁迫下杂交相思树生长及镉吸收分配的影响[J]. 植物营养与肥料学报, 2017, 23(5):1326-1334.

    Tang CQ, He QF, Qin YY, Shen WH, Liu X, Cao YY. Effect of nitrogen application on seedling growth and cadminm uptake and distribution in Acacia mangium×Acacia auriculiformis under cadmium stress[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(5):1326-1334.

    [25] 张盼盼, 袁琴琴, 王小林, 郭亚宁, 薛灵聪, 等. 镉胁迫对糜子幼苗生长及抗性生理的影响[J]. 分子植物育种, 2022:1-10.

    Zhang PP, Yuan QQ, Wang XL, Zhang YN, Xue LC, et al. Effect of cadmium stress on plant growth and resistance physiology in millet seedlings[J]. Molecular Plant Breeding, 2022:1-10.

    [26] 刘楚藩, 肖荣波, 黄飞, 戴伟杰, 高中原, 等. 土壤与大气双重胁迫下苋菜幼苗对铅的累积与生理响应[J]. 生态学报, 2020, 40(24):9174-9183.

    Liu CF, Xiao RB, Huang F, Dai WJ, Gao ZY, et al. Accumulation and physiological response of Amaranthus tricolor L. seedlings to lead under soil and atmospheric stress[J]. Acta Ecological Sinica, 2020, 40(24):9174-9183.

    [27] 杨帆, 王樱芝, 杨和行, 张瑛, 杨婧, 刘敏. 含铅、镉重金属细颗粒物对几种陆生植物的暴露危害[J]. 生态毒理学报, 2017, 12(6):179-187.

    Yang F, Wang YZ, Yang HX, Zhang Y, Yang J, Liu M. Hazard assessment of several terrestrial plants exposed to fine particulate matters on containing heavy metals lead and cadmium[J]. Asian Journal of Ecotoxicology, 2017, 12(6):179-187.

    [28] 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 等. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应[J]. 作物学报, 2021, 47(4):728-737.

    Lü DM, Zhu GL, Wang Y, Shi Y, Lu FG, et al. Growth, physiological, and heavy metal accumulation traits at seedling stage under heavy metal stress in castor (Ricinus communis L.)[J]. Acta Agronomica Sinica, 2021, 47(4):728-737.

    [29] 宋清梅, 蔡信德, 吴颖欣, 吴嘉慧, 陈显斌, 吴文成. 香根草对污染土壤水溶态重金属组分胁迫响应研究[J]. 农业环境科学学报, 2019, 38(12):2715-2722.

    Song QM, Cai XD, Wu YX, Wu JH, Chen XB, Wu WC. Response of Vetiveria zizanioides to the stress of watersoluble components of heavy metals in contaminated soil[J]. Journal of Agro-Environment Science, 2019, 38(12):2715-2722.

    [30] 姚俊修, 乔艳辉, 杨庆山, 仲伟国, 李庆华, 等. 重金属镉胁迫对黑杨派无性系光合生理及生长的影响[J]. 西北林学院学报, 2020, 35(2):40-46.

    Yao JX, Qiao YH, Yang QS, Zhong WG, Li QH, et al. Effects of cadmium stress on the growth and photosynthesis of Aigeiros clones[J]. Journal of Northwest Forestry University, 2020, 35(2):40-46.

    [31] 孔维萍, 程鸿, 岳宏忠. 镉胁迫对甜瓜幼苗叶片叶绿体超微结构及光合色素质量分数的影响[J]. 西北农业学报, 2020, 29(6):935-941.

    Kong WP, Chen H, Yue HZ. Effects of cadmium stress on leaf chloroplast ultrastructure and chlorophyll mass fraction of three melon varieties[J]. Acta Agriculture Boreali Occidentalis Sinica, 2020, 29(6):935-941.

    [32] 张大为, 杜云燕, 吴金锋, 周定港, 刘丽莉, 等. 镉胁迫对甘蓝型油菜幼苗生长及基因表达的影响[J]. 中国油料作物学报, 2020, 42(4):613-622.

    Zhang DW, Du YY, Wu JF, Zhou DG, Liu LL, et al. Effect of cadmium stress on plant growth and gene expression in Brassica napus seedlings[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(4):613-622.

    [33] 范佳明. 大气颗粒物中铅的污染特征及其在植物叶片中的迁移累积[D]. 杭州:浙江大学, 2019.
    [34] 李春烨, 丁国华, 刘保东. 重金属影响植物细胞超微结构和功能的研究进展[J]. 中国农学通报, 2013, 29(18):114-118.

    Li CY, Ding GH, Liu BD. Research progress of heavy metal affecting plant cell ultrastructure and function[J]. Chinese Agricultural Science Bulletin, 2013, 29(18):114-118.

    [35] 杨亚丽, 李友丽, 陈青云, 郭文忠. 土壤铅、镉、铬对蔬菜发育影响及迁移规律的研究进展[J]. 华北农学报, 2015, 30(S1):511-517.

    Yang YL, Li YL, Chen QY, Guo WZ. The research progress of lead, cadmium and chromium in soil on the growth and migration of vegetables[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(S1):511-517.

    [36]

    Mittler R, Vanderauwera S, Gollery A, Breusegem FV. Relative oxygen gene network of plants[J]. Trends Plant Sci, 2004, 9(10):490-498.

    [37] 铁得祥, 胡红玲, 陈洪, 喻秀燕, 张健, 等. 桢楠幼树生长及抗性生理对镉胁迫的响应[J]. 西北农林科技大学学报(自然科学版), 2019, 47(12):104-114.

    Tie DX, Hu HL, Chen H, Yu XY, Zhang J, et al. Responses of growth and resistant physiology of Phoebe zhennan saplings to cadmium stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(12):104-114.

    [38] 冯建鹏, 史庆华, 王秀峰, 洪艳艳. 镉对黄瓜幼苗光合作用、抗氧化酶和氮代谢的影响[J]. 植物营养与肥料学报, 2009, 15(4):970-974.

    Feng JP, Shi QH, Wang XF, Hong YY. Effects of cadmium on photosynthesis, antioxidant enzyme and nitrogen metabolism of cucumber seedlings[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4):970-974.

    [39]

    Zhou CF, Huang MY, Luo JW, Hou XL, PF XQ. Lead tolerance mechanism in Conyza canadensis:subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins[J]. J Plant Res, 2016, 129:251-262.

    [40] 陆婷. 不同污染水平下三种道路绿化树种颗粒物滞留能力及其生理响应[D]. 杭州:浙江农林大学, 2019.
    [41] 贾茵, 刘才磊, 兰晓悦, 赵健, 向元芬, 潘远智. 镉胁迫对小报春幼苗生长及生理特性的影响[J]. 西北植物学报, 2020, 40(3):454-462.

    Jia Y, Liu CL, Lan XY, Zhao J, Xiang YF, Pan YZ. Effect of cadmium stress on the growth and physiological characteristics of Primula forbesii seedlings[J]. Acta Bot Boreal Occident Sin, 2020, 40(3):454-462.

    [42] 汤文光, 肖小平, 张海林, 黄桂林, 唐海明, 等. 轮耕对双季稻田耕层土壤养分库容及Cd含量的影响[J]. 作物学报, 2018, 44(1):105-114.

    Tang WG, Xiao XP, Zhang HL, Huang GL, Tang HM, et al. Effects of rotational tillage on nutrient storage capacity and Cd content in tilth soil of double-cropping rice region[J]. Acta Agron Sin, 2018, 44(1):105-114.

    [43]

    Mahmood T, Islam KR. Response of rice seedlings to copper toxicity and acidity[J]. J Plant Nutr, 2005, 29(5):943-957.

计量
  • 文章访问数:  339
  • HTML全文浏览量:  2
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-08-26
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-02-27

目录

    /

    返回文章
    返回