Study on genetic diversity and distribution patterns of Bupleurum dracaenoides Huan C. Wang, Z. R. He & H. Sun
-
摘要: 本研究基于7个叶绿体DNA片段(cpDNA)和2个核DNA片段(ITS和PZ8)的测序数据,对龙血树柴胡(Bupleurum dracaenoides Huan C.Wang,Z.R.He&H.Sun)8个居群的153个样本进行了遗传多样性和分布式样研究。cpDNA片段分析结果显示:龙血树柴胡在物种水平具有较高的遗传多样性(Hd=0.862;Pi=0.00567),但居群内遗传多样性低,遗传变异主要存在于居群间,遗传分化显著(Fst=0.959);而核DNA片段ITS和PZ8的数据分析结果显示,其遗传多样性较低(Hd=0.532,Pi =0.00121和Hd=0.349,Pi=0.00060),遗传变异主要存在于居群内,居群间仅存在一定程度的遗传分化。中性检验和失配分布分析结果发现龙血树柴胡没有经历过近期种群扩张事件,8个居群的153个样本从遗传成份上可被分为两组。研究结果将为龙血树柴胡的资源保护和发掘提供参考。Abstract: Bupleurum dracaenoides Huan C. Wang, Z. R. He & H. Sun is a recently published species characterized by a woody stem up to 1.5 m in height. It is the only woody species of the genus Bupleurum found in Asia and is endemic to the dry-hot valleys of the Jinsha River. The distribution of B. dracaenoides is quite narrow, with only a few populations found in the Pudu River area of Yunnan Province and Huidong County of Sichuan Province. It is a critically endangered species, with a limited number of individuals and threatened wild habitat. Thus, assessing its genetic diversity and distribution patterns is urgent for the protection of its wild resources. In this study, 153 individuals were studied using seven chloroplast DNA fragments and two nuclear DNA fragments to investigate the genetic diversity and distribution within and among eight populations of B. dracaenoides. Based on chloroplast DNA data analysis, B. dracaenoides showed high genetic diversity at the species level (Hd=0.862; Pi=0.00567), and genetic variations were mostly distributed among populations (Fst=0.959). However, genetic diversity at the species level was relatively low based on ITS and PZ8 (ITS:Hd=0.532, Pi=0.00121;PZ8:Hd=0.349, Pi=0.00060), and genetic variations were mostly distributed within populations (ITS:Fst=0.475; PZ8:Fst=0.093). Neutral test and mismatch distribution analyses of the chloroplast DNA, ITS, and PZ8 data indicated that B. dracaenoides has not experienced recent population expansion. STRUCTURE analysis of the combined nuclear DNA sequencing data revealed that all 153 individuals were grouped into two genetic clusters.
-
Keywords:
- Bupleurum dracaenoides /
- Genetic diversity /
- Genetic structure
-
-
[1] Zhao YJ, Gong X. Diversity and conservation of plant species in dry valleys, southwest China[J]. Biodivers Conserv, 2015, 24(11):2611-2623.
[2] 金振洲. 滇川干热河谷种子植物区系成分研究[J]. 广西植物, 1999, 19(1):1-14. Jin ZZ. The floristic study on seed plants in the dry-hot valleys in Yunnan and Sichuan[J]. Guihaia, 1999, 19(1):1-14.
[3] Wang HC, He ZR, Wang YH, Sun H. Bupleurum dracaenoides (Subgenus Bupleurum, Apiaceae):a new shrubby species from southwestern China[J]. Syst Bot, 2013, 38(4):1188-1195.
[4] 王馨蕊. 龙血树柴胡的遗传多样性及种子萌发特性研究[D]. 昆明:云南大学, 2016:27-42. [5] Fraser DJ, Bernatchez L. Adaptive evolutionary conservation:towards a unified concept for defining conservation units[J]. Mol Ecol, 2001, 10(12):2741-2752.
[6] Doyle J. DNA Protocols for Plants-CTAB Total DNA Isolation[M]. Berlin:Springer, 1991:101-115.
[7] Zhao ZC, Liu J, Zhou MM, Pan YZ. Chloroplast genome characterization of Bupleurum dracaenoides, a critically endangered woody species endemic to China, with insights of Apioideae phylogeny[J]. Gene Reports, 2020, 20:100784.
[8] Li MR, Wang XF, Zhang C, Wang HY, Shi FX, et al. A simple strategy for development of single nucleotide polymorphisms from non-model species and its application in Panax[J]. Int J Mol Sci, 2013, 14(12):24581-24591.
[9] Swindell SR, Plasterer TN. SEQMAN:contig assembly[J]. Methods Mol Biol, 1997, 70(70):75.
[10] Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucl Acids Symp Ser, 1999, 41:95-98.
[11] Swofford DL. PAUP*:Phylogenetic Analysis Using Parsimony (* and Other Methods). version 4.[M]. Sunderland:Sinauer Associates, 2003.
[12] Librado P, Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11):1451-1452.
[13] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3):585-595.
[14] Fu YX, Li WH. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133(3):693-709.
[15] Excoffier L, Lischer HEL. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Res, 2010, 10(3):564-567.
[16] Nielsen R. Molecular signatures of natural selection[J]. Ann Rev Gen, 2005, 39(1):197-218.
[17] Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Mol Biol and Evol, 1992, 9(3):552-569.
[18] Wright S. Evolution and the Genetics of Populations, Volume 4:Variability Within and Among Natural Populations[M]. Chicago:University of Chicago Press, 1978:1-100.
[19] McCauley DE. The use of chloroplast DNA polymorphism in studies of gene flow in plants[J]. Trends Ecol Evol, 1995, 10(5):198-202.
[20] Pons O, Petit RJ. Measuring and testing genetic differentiation with ordered versus unordered alleles[J]. Genetics, 1996, 144(3):1237-1245.
[21] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.
[22] Earl DA, vonHoldt BM. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Cons Gen Res, 2012, 4(2):359-361.
[23] Sun H, Zhang J, Deng T, Boufford DE. Origins and evolution of plant diversity in the Hengduan Mountains, China[J]. Plant Divers, 2017, 39(4):161-166.
[24] Sun H, Li Z, Landis JB, Qian L, Zhang T, et al. Effects of drainage reorganization on phytogeographic pattern in Sino-Himalaya[J]. Alpine Bot, 2021. https://org/10.1007/s00035-021-00269-4.
[25] Xiao S, Ji Y, Liu J, Gong X. Genetic characterization of the entire range of Cycas panzhihuaensis (Cycadaceae)[J]. Plant Divers, 2020, 42(1):7-18.
[26] Hu GW, Long CL, Jin XH. Dendrobium wangliangii (Orchidaceae), a new species belonging to section Dendrobium from Yunnan, China[J]. Bot J Linn Society, 2008, 157(2):217-221.
[27] Jia J, Zeng LQ, Gong X. High genetic diversity and population differentiation in the critically endangered plant species Trailliaedoxa gracilis (Rubiaceae)[J]. Plant Mol Biol Rep, 2016, 34(1):327-338.
[28] Reisch C, Bernhardt RM. The impact of study design and life history traits on genetic variation of plants determined with AFLPs[J]. Plant Ecol, 2014, 215(12):1493-1511.
[29] 袁王俊, 张维瑞, 尚富德. 河南产不同居群柴胡遗传多样性分析[J]. 中草药, 2012, 43(6):1166-1169. Yuan WJ, Zhang WR, Shang FD. Analysis on genetic diversity of Bupleurum chinense from different geographical populations in Henan Province[J]. Chinese Trad Herb Drugs, 2012, 43(6):1166-1169.
[30] Zhao C, Wang CB, Ma XG, Liang QL, He XJ. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation[J]. Mol Phylogenet Evol, 2013, 68(3):628-643.
[31] 张振春. 两种伞形科植物雄全同株性系统的生态适应对策[D]. 乌鲁木齐:新疆农业大学, 2009. [32] 张振春, 谭敦炎. 雄全同株植物簇花芹花期性别分配与开花式样[J]. 植物生态学报, 2012, 36(1):63-71. Zhang ZC, Tan DY. Floral sex allocation and flowering pattern in the andromonocious Soranthus meyeri (Apiaceae)[J]. Chinese J Plant Ecol, 2012, 36(1):63-71.
[33] Jia J, Wu H, Wang JF, Gong X. Genetic diversity and structure of Munronia delavayi Franch. (Meliaceae), an endemic species in the dry-hot valley of Jinsha River, south-western China[J]. Genet Resour Crop Evol, 2014, 61(7):1381-1395.
[34] Zhao YJ, Gong X. Genetic structure of the endangered Leucomeris decora (Asteraceae) in China inferred from chloroplast and nuclear DNA markers[J]. Conserv Genet, 2011, 13(1):271-281.
[35] Yang ZY, Yi TS, Zeng LQ, Gong X. The population genetic structure and diversification of Aristolochia delavayi (Arisolochiaceae), an endangered species of the dry hot valleys of the Jinsha River, southwestern China[J]. Botany, 2014, 92:579-587.
[36] Zhang T, Sun H. Phylogeographic structure of Terminalia franchetii (Combretaceae) in southwest China and its implications for drainage geological history[J]. J Plant Res, 2011, 124(1):63-73.
[37] 金振洲, 杨永平, 陶国达. 华西南干热河谷种子植物区系的特征、性质和起源[J]. 云南植物研究, 1995, 172(2):129-143. Jin ZZ, Yang YP, Tao GD. The floristic characteristics, nature and origin of seed plants in the dry-hot river valley of SW China[J]. Acta Botanica Yunnanica, 1995, 17(2):129-143.
[38] Montalvo AM, Buchmann SL, Rice KJ, Buchmann SL, Cory C. Restoration biology:a population biology perspective[J]. Rest Ecol, 1997, 5(4):277-290.
[39] 李昂, 葛颂. 植物保护遗传学研究进展[J]. 生物多样性, 2002, 10(1):61-71. Li A, Ge S. Advances in plant conservation genetics[J]. Biodiversity Science, 2002, 10(1):61-71.
[40] Falk DA, Holsinger KE. Genetics and Conservation of Rare Plants[M]. New York:Oxford University Press, 1991.
-
期刊类型引用(2)
1. 石燕金,邢丹,韩世玉,罗朝斌,张芳,彭世清. 基于CNKI数据库的丛枝菌根真菌提高植物抗旱性分析. 现代园艺. 2024(15): 53-55+58 . 百度学术
2. 张惠惠,张国帅,张智,黄林芳. 最大熵模型在植物生态评估领域的应用. 安徽农业科学. 2024(22): 248-257+264 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 376
- HTML全文浏览量: 6
- PDF下载量: 436
- 被引次数: 2