高级检索+

转录因子的胞间移动在植物生长发育中的作用

易艾霖, 刘冬梅, 皮利民

易艾霖, 刘冬梅, 皮利民. 转录因子的胞间移动在植物生长发育中的作用[J]. 植物科学学报, 2021, 39(5): 552-558. DOI: 10.11913/PSJ.2095-0837.2021.50552
引用本文: 易艾霖, 刘冬梅, 皮利民. 转录因子的胞间移动在植物生长发育中的作用[J]. 植物科学学报, 2021, 39(5): 552-558. DOI: 10.11913/PSJ.2095-0837.2021.50552
Yi Ai-Lin, Liu Dong-Mei, Pi Li-Min. Role of intercellular movement of transcription factors in plant growth and development[J]. Plant Science Journal, 2021, 39(5): 552-558. DOI: 10.11913/PSJ.2095-0837.2021.50552
Citation: Yi Ai-Lin, Liu Dong-Mei, Pi Li-Min. Role of intercellular movement of transcription factors in plant growth and development[J]. Plant Science Journal, 2021, 39(5): 552-558. DOI: 10.11913/PSJ.2095-0837.2021.50552
易艾霖, 刘冬梅, 皮利民. 转录因子的胞间移动在植物生长发育中的作用[J]. 植物科学学报, 2021, 39(5): 552-558. CSTR: 32231.14.PSJ.2095-0837.2021.50552
引用本文: 易艾霖, 刘冬梅, 皮利民. 转录因子的胞间移动在植物生长发育中的作用[J]. 植物科学学报, 2021, 39(5): 552-558. CSTR: 32231.14.PSJ.2095-0837.2021.50552
Yi Ai-Lin, Liu Dong-Mei, Pi Li-Min. Role of intercellular movement of transcription factors in plant growth and development[J]. Plant Science Journal, 2021, 39(5): 552-558. CSTR: 32231.14.PSJ.2095-0837.2021.50552
Citation: Yi Ai-Lin, Liu Dong-Mei, Pi Li-Min. Role of intercellular movement of transcription factors in plant growth and development[J]. Plant Science Journal, 2021, 39(5): 552-558. CSTR: 32231.14.PSJ.2095-0837.2021.50552

转录因子的胞间移动在植物生长发育中的作用

基金项目: 

国家自然科学基金项目(31830057)。

详细信息
    作者简介:

    易艾霖(1995-),女,硕士研究生,研究方向为植物干细胞命运调控(E-mail:570944191@qq.com);刘冬梅(1996-),女,硕士研究生,研究方向为植物干细胞命运调控(E-mail:1143236452@qq.com)。#共同第一作者。

    通讯作者:

    皮利民,E-mail:limin.pi@whu.edu.cn

  • 中图分类号: Q943.2

Role of intercellular movement of transcription factors in plant growth and development

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31830057).

  • 摘要: 多细胞生物体的生长发育依赖于细胞和细胞之间物质的交流和信号的传递。细胞命运的特化受到来自旁临细胞信息的调控。作为细胞-细胞通讯方式之一的蛋白质胞间运输广泛的存在于植物各种发育过程中。本文总结了近年来有关植物重要发育调控转录因子在细胞间移动的研究进展,综述了这些因子移动的细胞学基础和分子调控模型,并对今后蛋白胞间移动研究面临的挑战和需引入的新技术手段进行了展望。
    Abstract: The growth and development of multicellular organisms relies on substance exchange and signal transmission between cells. Cell fate specification is tightly controlled by signals from adjacent cells. Intracellular protein transport is widely involved in various developmental processes in plants. In this review, we summarize recent advances in the intercellular movement of key transcription factors controlling plant development. We also review the cellular basis and molecular regulatory models of movement. Finally, we discuss challenges and new techniques for studying intercellular protein movement.
  • [1]

    Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, et al. Selective trafficking of KNOTTED 1 ho-meodomain protein and its mRNA through plasmodesmata[J]. Science, 1995, 270(5244):1980-1983.

    [2]

    Kim JY, Yuan Z, Jackson D. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis[J]. Development, 2003, 130(18):4351-4362.

    [3]

    Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, et al. Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation[J]. Deve-lopment, 2005, 132(24):5387-5398.

    [4]

    Sessions A, Yanofsky MF, Weigel D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1[J]. Science, 2000, 289(5480):779-782.

    [5]

    Nakajima K, Sena G, Nawy T, Benfey PN. Intercellular movement of the putative transcription factor SHR in root patterning[J]. Nature, 2001, 413(6853):307-311.

    [6]

    Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex[J]. Genes Dev, 2011, 25(19):2025-2030.

    [7]

    Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, et al. Organizer-derived WOX5 sgnal maintains root columella stem cells through Chromatin-mediated repression of CDF4 expression[J]. Dev Cell, 2015, 33(5):576-588.

    [8]

    Lucas WJ, Ham BK, Kim JY. Plasmodesmata-bridging the gap between neighboring plant cells[J]. Trends Cell Biol, 2009, 19:495-503.

    [9]

    Crawford KM, Zambryski PC. Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport[J]. Curr Biol, 2000, 10(17):1032-1040.

    [10]

    Robards AW. A new interpretation of plasmodesmatal ultrastructure[J]. Planta, 1968, 82(3):200-210.

    [11]

    Barton DA, Cole L, Collings DA, Liu DY, Smith PM, et al. Cell-to-cell transport via the lumen of the endoplasmic reticulum[J]. Plant J, 2011, 66(5):806-817.

    [12]

    Roberts AG, Oparka KJ. Plasmodesmata and the control of symplastic transport[J]. Plant Cell Environ, 2010, 26(1):103-124.

    [13]

    Steeves TA, Sussex IM. Patterns in Plant Development[M]. New York:Cambridge University Press, 1989.

    [14]

    Clark SE. Organ formation at the vegetative shoot meristem[J]. Plant Cell, 1997, 9(7):1067-1076.

    [15]

    Satina S, Blakeslee AF. Periclinal chimeras in Datura stramonium in relation to development of leaf and flower[J]. Am J Bot, 1941, 28(10):862-871.

    [16]

    Kim JY, Rim Y, Wang J, Jackson D. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking[J]. Genes Dev, 2005, 19(7):788-793.

    [17]

    Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, et al. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function[J]. Science, 2011, 333(6046):1141-1144.

    [18]

    Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1998, 95(6):805-815.

    [19]

    Laux T, Mayer KF, Berger J, Jürgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development, 1996, 122(1):87-96.

    [20]

    Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell, 2000, 100(6):635-644.

    [21]

    Gallois JL, Nora FR, Mizukami Y, Sablowski R. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem[J]. Genes Dev, 2004, 18(4):375-380.

    [22]

    Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity[J]. Science, 2000, 289(5479):617-619.

    [23]

    Daum G, Medzihradszky A, Suzaki T, Lohmann JU. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis[J]. Proc Natl Acad Sci USA, 2014, 111(40):14619-14624.

    [24]

    Rodriguez K, Perales M, Snipes S, Yadav RK, Diaz-Mendoza M, et al. DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning[J]. Proc Natl Acad Sci USA, 2016, 113(41):6307-6315.

    [25]

    Snipes SA, Rodriguez K, de Vries AE, Miyawaki KN, Perales M, et al. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription[J]. PLoS Genet, 2018, 14(4):e1007351.

    [26]

    Su YH, Zhou C, Li YJ, Yu Y, Tang LP, et al. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem[J]. Proc Natl Acad Sci USA, 2020, 117(36):22561-22571.

    [27]

    Van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. Short-range control of cell differentiation in the Arabidopsis root meristem[J]. Nature. 1997, 390(6657):287-289.

    [28]

    Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashi-moto T, et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers[J]. Nature, 2007, 446(7137):811-814.

    [29]

    Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants[J]. Science, 2007, 316(5823):421-425.

    [30]

    Vatén A, Dettmer J, Wu S, Stierhof YD, Miyashima S, et al. Callose biosynthesis regulates symplastic trafficking during root development[J]. Dev Cell, 2011, 21(6):1144-1155.

    [31]

    Welch D, Hassan H, Blilou I, Immink R, Heidstra R, et al. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action[J]. Genes Dev, 2007, 21(17):2196-2204.

    [32]

    Dong W, Zhu Y, Chang H, Wang C, Yang J, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation[J]. Nature, 2021, 589(7843):586-590.

    [33]

    Wu S, Gallagher KL. Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor[J]. Plant J, 2013, 74(1):148-159.

    [34]

    Koizumi K, Wu S, MacRae-Crerar A, Gallagher KL. An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor[J]. Curr Biol, 2011, 21(18):1559-1564.

    [35]

    Spiegelman Z, Lee CM, Gallagher KL. KinG is a plant-specific kinesin that regulates both intra- and intercellular movement of SHORT-ROOT[J]. Plant Physiol, 2018, 176(1):392-405.

    [36]

    Sessions A, Yanofsky MF, Weigel D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1[J]. Science, 2000, 289(5480):779-782.

    [37]

    Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis[J]. Cell, 1992, 69(5):843-859.

    [38]

    Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, et al. Modes of intercellular transcription factor movement in the Arabidopsis apex[J]. Development, 2003, 130(16):3735-3745.

    [39]

    Winter CM, Austin RS, Blanvillain-Baufumé S, Reback MA, Monniaux M, et al. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response[J]. Dev Cell, 2011, 20(4):430-443.

    [40]

    Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis[J]. Plant Cell, 1989, 1:37-52.

    [41]

    Lenhard M, Bohnert A, Jürgens G, Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS[J]. Cell, 2001, 105(6):805-814.

    [42]

    Urbanus SL, Martinelli AP, Dinh QD, Aizza LC, Dornelas MC, et al. Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition[J]. Plant J, 2010, 63(1):60-72.

    [43]

    Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, et al. GLOBOSA:a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis[J]. EMBO J, 1992, 11(13):4693-4704.

    [44]

    Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z. Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking[J]. Development, 1996, 122(11):3433-3441.

    [45]

    Salazar-Henao JE, Mokkapati G, Khor EHX, Chou YC, Jane WN, et al. Characterization of root epidermal cell patterning and differentiation in Arabidopsis[J]. Methods Mol Biol, 2018, 1761:85-93.

    [46]

    Lee MM, Schiefelbein J. Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback[J]. Plant Cell, 2002, 14(3):611-618.

    [47]

    Di Cristina M, Sessa G, Dolan L, Linstead P, Baima S, et al. The Arabidopsis Athb-10(GLABRA2) is an HD-Zip protein required for regulation of root hair development[J]. Plant J, 1996, 10(3):393-402.

    [48]

    Kang YH, Song SK, Schiefelbein J, Lee MM. Nuclear trapping controls the position-dependent localization of CAPRICE in the root epidermis of Arabidopsis[J]. Plant Physiol, 2013, 163(1):193-204.

    [49]

    Song JH, Kwak SH, Nam KH, Schiefelbein J, Lee MM. QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis[J]. Nat Commun, 2019, 10(1):1744.

计量
  • 文章访问数:  520
  • HTML全文浏览量:  14
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-05-09
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-10-27

目录

    /

    返回文章
    返回