AtMES1 positively regulates seed number per silique in Arabidopsis thaliana (L.) Heynh
-
摘要: 基于拟南芥(Arabidopsis thaliana(L.) Heynh)单角果种子数量(角粒数)的全基因组关联分析(GWAS)数据,筛选到一个可能影响角粒数的候选基因AtMES1,并对其表达模式和转录组数据进行了分析。结果显示,AtMES1的表达模式分析结果表明其在心皮和花序处等特异性表达。分析该基因T-DNA插入突变体的表型发现其角粒数比野生型对照显著下降。转录组分析结果表明,参与调控胚珠发生和发育的多个重要基因在缺失突变体中表达下调。同时使用胎座特异启动子使AtMES1在雌蕊中过量表达,发现转基因植株的角果长度变短,但种子密度显著增加,原因可能是通过激活植物激素相关通路,从而调控胚珠发生和发育相关基因表达正调控角粒数。研究结果初步证实了AtMES1具有正调控拟南芥角粒数和种子密度的功能。Abstract: According to our previous genome-wide association analysis (GWAS) and prediction of gene expression, we identified AtMES1 as a potential gene that may participate in regulating seed number per silique (SNS). We identified the loss-of-function mutants of AtMES1 and analyzed their phenotypes. AtMES1 had significantly reduced SNS and seed density compared with the wild-type control. Transcriptomic analysis revealed that multiple important genes involved in hormone-related ovule initiation and development were down-regulated, suggesting that AtMES1 positively regulated SNS by modulating hormone signals. The ectopic expression of AtMES1 by placenta-specific promoter STK led to shorter siliques but significantly increased seed density, further demonstrating that AtMES1 positively regulated ovule initiation and seed density. In conclusion, our study suggests that AtMES1 is a new positive regulator of Arabidopsis ovule initiation and SNS.
-
Keywords:
- AtMES1 /
- Seed number per silique (SNS) /
- Seed density /
- Transcriptome sequencing
-
-
[1] Tong H, Chu C. Functional specificities of brassinosteroid and potential utilization for crop improvement[J]. Trends Plant Sci, 2018, 23(11):1016-1028.
[2] Jiang WB, Lin WH. Brassinosteroid functions in Arabidopsis seed development[J]. Plant Signal Behav, 2013, 8(10):e25928.
[3] Irish V. The ABC model of floral development[J]. Curr Biol, 2017, 27(17):R887-R890.
[4] Yu SX, Zhou LW, Hu LQ, Jiang YT, Zhang YJ, et al. Asynchrony of ovule primordia initiation in Arabidopsis[J]. Development, 2020, 147(24):196618.
[5] Gómez MD, Fuster-Almunia C, Ocaña-Cuesta J, Alonso JM, Pérez-Amador MA. RGL2 controls flower development, ovule number and fertility in Arabidopsis[J]. Plant Sci, 2019, 281:82-92.
[6] Pereira PA, Boavida LC, Santos MR, Becker JD. AtNOT1 is required for gametophyte development in Arabidopsis[J]. Plant J, 2020, 103(4):1289-1303.
[7] Hackenberg D, Twell D. The evolution and patterning of male gametophyte development[J]. Curr Top Dev Biol, 2019, 131:257-298.
[8] Yuan J, Kessler SA. A genome-wide association study reveals a novel regulator of ovule number and fertility in Arabidopsis thaliana[J]. PLoS Genet, 2019, 15(2):e1007934.
[9] Di Marzo M, Roig-Villanova I, Zanchetti E, Caselli F, Gregis V, et al. MADS-Box and bHLH transcription factors coordinate transmitting tract development in Arabidopsis thaliana[J]. Front Plant Sci, 2020, 11:526.
[10] Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(1):69-80.
[11] Bencivenga S, Simonini S, Benková E, Colombo L. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis[J]. Plant Cell, 2012, 24(7):2886-2897.
[12] Marsch-Martínez N, de Folter S. Hormonal control of the development of the gynoecium[J]. Curr Opin Plant Biol, 2016, 29:104-114.
[13] Marhavỳ P, Bielach A, Abas L, Abuzeineh A, Duclercq J, et al. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis[J]. Dev Cell, 2011, 21(4):796-804.
[14] Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater MM, et al. Gynoecium size and ovule number are interconnected traits that impact seed yield[J]. J Exp Bot, 2020, 71(9):2479-2489.
[15] Sita K, Sehgal A, Kumar J, Kumar S, Singh S, et al. Identification of high-temperature tolerant Lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits[J]. Front Plant Sci, 2017, 8:744.
[16] Jiang Y, Lahlali R, Karunakaran C, Warkentin TD, Davis AR, et al. Pollen, ovules, and pollination in pea:success, failure, and resilience in heat[J]. Plant Cell Environ, 2019, 42(1):354-372.
[17] Plackett ARG, Powers SJ, Phillips AL, Wilson ZA, Hedden P, et al. The early inflorescence of Arabidopsis tha-liana demonstrates positional effects in floral organ growth and meristem patterning[J]. Plant Reprod, 2018, 31(2):171-191.
[18] Wang Y, Li Y, Yan X, Ding L, Shen L, et al. Characte-rization of C- and D-Class MADS-box genes in Orchids[J]. Plant Physiol, 2020, 184(3):1469-1481.
[19] Robinson-Beers K, Pruitt RE, Gasser CS. Ovule development in wild-type Arabidopsis and two female-sterile mutants[J]. Plant Cell, 1992, 4(10):1237-1249.
[20] Cucinotta M, Colombo L, Roig-Villanova I. Ovule development, a new model for lateral organ formation[J]. Front Plant Sci, 2014, 5:117.
[21] Ó'Maoiléidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development[J]. New Phytol, 2014, 201(1):16-30.
[22] Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis[J]. Plant Cell, 2003, 15(11):2603-2611.
[23] Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development[J]. Nature, 2003, 424(6944):85-88.
[24] Huang HY, Jiang WB, Hu YW, Wu P, Zhu JY, et al. BR signal influences Arabidopsisovule and seed number through regulating related genes expression by BZR1[J]. Mol Plant, 2013, 6(2):456-469.
[25] Gonçalves B, Hasson A, Belcram K, Cortizo M, Morin H, et al. A conserved role for CUP-SHAPED COTYLEDON genes during ovule development[J]. Plant J, 2015, 83(4):732-742.
[26] Ceccato L, Masiero S, Sinha Roy D, Bencivenga S, Roig-Villanova I, et al. Maternal control of PIN1 is required for female gametophyte development in Arabidopsis[J]. PLoS One, 2013, 8(6):e66148.
[27] Galbiati F, Sinha Roy D, Simonini S, Cucinotta M, Ceccato L, et al. An integrative model of the control of ovule primordia formation[J]. Plant J, 2013, 76(3):446-455.
[28] Jiang HL, Hong J, Jiang YT, Yu SX, Zhang YJ, et al. Genome-wide association analysis identifies candidate genes regulating seed number per silique in Arabidopsis thaliana[J]. Plants (Basel), 2020, 9(5):585.
[29] Yang Y, Xu R, Ma CJ, Vlot AC, Klessig DF, et al. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis[J]. Plant Physiol, 2008, 147(3):1034-1045.
[30] Alvarez J, Smyth DR. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS[J]. Development, 1999, 126(11):2377-2386.
[31] Heisler MG, Atkinson A, Bylstra YH, Walsh R, Smyth DR. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein[J]. Development, 2001, 128(7):1089-1098.
[32] Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J, Chavez Montes RA, Lozano-Sotomayor P, et al. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium[J]. PLoS Genet, 2017, 13(4):e1006726.
[33] Cucinotta M, Manrique S, Cuesta C, Benkova E, Novak O, et al. CUP-SHAPED COTYLEDON1(CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis[J]. J Exp Bot, 2018, 69(21):5169-5176.
[34] Zhai H, Feng Z, Du X, Song Y, Liu X, et al. A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2018, 131(3):539-553.
[35] Guan P, Di N, Mu Q, Shen X, Wang Y, et al. Use of near-isogenic lines to precisely map and validate a major QTL for grain weight on chromosome 4AL in bread wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2019, 132(8):2367-2379.
[36] Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nat Biotechnol, 2013, 31(9):848-852.
[37] Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW. Homeotic transformation of ovules into carpel-like structures in Arabidopsis[J]. Plant Cell, 1994, 6(3):333-349.
[38] Arnaud N, Pautot V. Ring the BELL and tie the KNOX:roles for TALEs in gynoecium development[J]. Front Plant Sci, 2014, 5:93.
[39] Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. The evolution of euAPETALA2 genes in vascular plants:from plesiomorphic roles in sporangia to acquired functions in ovules and fruits[J]. Mol Biol Evol, 2021, 38(6):2319-2336.
[40] Schneitz K, Baker SC, Gasser CS, Redweik A. Pattern formation and growth during floral organogenesis:HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana[J]. Development, 1998, 125(14):2555-2563.
[41] Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, et al. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis[J]. Plant Cell, 2007, 19(8):2544-2556.
[42] Barro-Trastoy D, Carrera E, Baños J, Palau-Rodríguez J, Ruiz-Rivero O, et al. Regulation of ovule initation by gibberellins and brassinosteroids in tomato and Arabidopsis:two plant species, two molecular mechanisms[J]. Plant J, 2020, 102(5):1026-1041.
[43] Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, et al. Gibberellins negatively modulate ovule number in plants[J]. Development, 2018, 145(13):163865.
-
期刊类型引用(2)
1. 刘晓晨,王树凤,张慧萍,张建锋. 抗盐剂对盐胁迫下南瓜种子萌发和幼苗生长的影响. 福建农林大学学报(自然科学版). 2024(05): 577-586 . 百度学术
2. 王琛,陶烨,韩艳秋,张锐,高雅,李莉峰. ~(60)Co-γ辐照蓝莓钙形态和亚细胞钙分布对果实硬度的影响. 核农学报. 2023(07): 1378-1384 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 497
- HTML全文浏览量: 6
- PDF下载量: 325
- 被引次数: 5