Application of UAV images in monitoring flowering coverage and insect visiting activities in wetland plant communities
-
摘要: 在群落水平的传粉生态学研究中,使用传统的调查方法对大尺度样地进行定量分析存在一定的局限性,无人机遥感技术可能为此提供一种解决方案。为探讨无人机影像数据应用于群落水平传粉生物学的可行性,本研究以神农架大九湖亚高山湿地草本植物群落为对象,利用消费级无人机获取4个面积在1600~3000 m2的样地在不同季节的可见光影像数据,借助ContextCapture软件拼接影像,采用支持向量机(SVM)的分类方法计算不同颜色花的开花覆盖度,并对16个2 m×2 m样方中访花昆虫的活动进行了实地调查。数据分析结果显示:(1)无人机影像中不同颜色的开花覆盖度与传粉者数量显著相关,并呈指数关系;(2)随着无人机飞行高度的增加,开花覆盖度的观测值呈减小趋势;(3)不同样地中,单位开花面积上的传粉者数量差异不显著。本研究还探讨了通过无人机影像计算开花覆盖度从而监测研究区域的开花季相动态和估算传粉者数量的可行性。Abstract: In studies on pollination ecology at the community level, the use of traditional survey methods for quantitative analysis of large-scale sample plots has certain technical limitations. Here, we explored the feasibility of applying unmanned aerial vehicle (UAV) image data to study pollination biology at the herbaceous plant community level in a subalpine wetland of Shennongjia Dajiuhu. The support vector machine (SVM) classification method was used to calculate flowering coverage of different-colored flowers based on UAV visible light images of four sites (1600~3000 m2) across different seasons, which were then combined using ContextCapture software. Combined with field surveys of flower-visiting insect activity within 16 quadrats (2 m×2 m each), the results showed that:(1) Flowering coverage of different-colored flowers in the UAV images was significantly correlated with number of pollinators, showing an exponential relationship. (2) The observed value of flowering coverage showed a decreasing trend with the increase in UAV flight altitude. (3) In the different sample plots, the number of pollinators within a unit flowering area showed no significant differences. We also explored the feasibility of calculating flowering coverage through UAV images to monitor flowering season dynamics in the study area and estimate the number of pollinators.
-
-
[1] Ollerton J, Rouquette J, Breeze TD. Insect pollinators boost the market price of culturally important crops:holly, mistletoe and the spirit of Christmas[J]. Journal of Pollination Ecology, 2016, 19:93-97.
[2] Mcewen JR, Vamosi JC. Floral colour versus phylogeny in structuring subalpine flowering communities[J]. Proc Biol Sci, 2010, 277(1696):2957-2965.
[3] Tuell JK, Fiedler AK, Landis D, & Isaacs R. Visitation by wild and managed bees (Hymenoptera:Apoidea) to Eastern U.S. native plants for use in conservation programs[J]. Environ Entomol, 2008, 37:707-718.
[4] Sletvold N. The context dependence of pollinator-mediated selection in natural populations[J]. Int J Plant Sci, 2019, 180(9):934-943.
[5] 方强,黄双全. 群落水平上传粉生态学的研究进展[J].科学通报, 2014, 59(6):449-458. Fang Q, Huang SQ. Progress in pollination ecology at the community level[J]. Chinese Science Bulletin, 2014, 59(6):449-458.
[6] 杜巍, 王红侠, 汪小凡. 神农架地区典型草本群落中的昆虫访花行为比较[J]. 生物多样性, 2007, 15(6):666-672. Du W, Wang HX, Wang XF. Insect visitors and their beha-viors in the typical herbaceous plant communities of the Shennongjia mountains[J]. Biodiversity Science, 2007, 15(6):666-672.
[7] 童泽宇, 徐环李, 黄双全. 探讨监测传粉者的方法[J]. 生物多样性, 2018, 26(5):433-444. Tong ZY, Xu HL, Huang SQ, Examining methodologies of pollinator detection in the field[J]. Biodiversity Science, 2018, 26(5):433-444.
[8] Chen B, Huang B, Xu B. Multi-source remotely sensed data fusion for improving land cover classification[J]. Isprs J Photogramm Remote Sens, 2017, 124:27-39.
[9] Landmann T, Piiroinen R, Makori DM, Abdel-Rahman EM, Makau S, Raina SK. Application of hyperspectral remote sensing for flower mapping in African savannas[J]. Remote Sens Environ, 2015, 166:50-60.
[10] Christin C, Dirk L, Marieke MT, Peter B, Hans P. Robinia pseudoacacia L. flower analyzed by using unmanned aerial vehicle (UAV)[J]. Remote Sens(basel), 2017, 9(11):1091.
[11] Lino ACL, Sanches J, Dias-Tagliacozzo GM, Fabbro IMD, Nascimento TS. Flower classification supported by digital imaging techniques[J]. Journal of Information Technology in Agriculture, 2011, 1(4):1-6.
[12] Xavier SS, Coffin AW, Olson DM, Dawn MO, Jason MS. Remotely estimating beneficial arthropod populations:Implications of a low-cost small unmanned aerial system[J]. Remote Sens(basel), 2018, 10(9):1485.
[13] Müllerová J, Bartaloš T, Br[AKu。D] na J, Petr Dvo[AKrˇD] ák, Michaela Vítková. Unmanned aircraft in nature conservation:an example from plant invasions[J]. Int J Remote Sens, 2017, 38(8-10):2177-2198.
[14] 孙中宇, 荆文龙, 乔曦, 杨龙. 基于无人机遥感的盛花期薇甘菊爆发点识别与监测[J]. 热带地理, 2019, 39(4):482-491. Sun ZY, Jing WL, Qiao X, Yang L. Identification and monitoring of blooming Mikania micrantha outbreak points based on UAV remote sensing[J]. Tropical Geography, 2019, 39(4):482-491.
[15] 冯家莉, 刘凯, 朱远辉, 李勇, 柳林, 蒙琳. 无人机遥感在红树林资源调查中的应用[J]. 热带地理, 2015, 35(1):35-42. Feng JL, Liu K, Zhu YH, Li Y, Liu L, Meng L. Application of unmanned aerial vehicles to mangrove resources monitoring[J]. Tropical Geography, 2015, 35(1):35-42.
[16] Kaneko K, Nohara S. Review of effective vegetation mapping using the UAV (Unmanned Aerial Vehicle) method[J]. Journal of Geographic Information System, 2014, 6(6):733-742.
[17] Getzin S, Wiegand K, Schöning I. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles[J]. Methods Ecol Evol, 2012, 3(2):397-404.
[18] Gonzalez LF, Montes GA, Puig E, Johnson S, Menger-sen K, Gaston KJ. Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation[J]. Sensors, 2016, 16:1-18.
[19] Yang J, Li B. New perspectives and techniques are needed to advance invasion science[J]. Biodiversity Science, 2017, 25(12):1255-1256.
[20] Galbraith SM, Vierling LA, Bosque-Pérez NA. Remote sensing and ecosystem services:Current status and future opportunities for the study of bees and pollination-related services[J]. Curr For Rep, 2015, 1(4):261-274.
[21] 胡健波, 张健. 无人机遥感在生态学中的应用进展[J]. 生态学报, 2018, 38(1):20-30. Hu JB, Zhang J. Unmanned aerial vehicle remote sensing in ecology:Advances and prospects[J]. Acta Ecologica Sinica, 2018, 38(1):20-30.
[22] Chen B, Jin Y, Brown PH. An enhanced bloom index for quantifying floral phenology using multi-scale remote sensing observations[J]. Isprs J Photogramm Remote Sens, 2019, 156:108-120.
[23] 周文昌, 史玉虎, 潘磊, 崔鸿侠,张志鳞,杨敬元.神农架林区大九湖湿地生态系统服务价值评价[J].水土保持通报, 2018, 38(1):208-213. Zhou WC, Shi YH, Pan L, Cui HX, Zhang ZL, Yang JY. Evaluation of ecosystem services value of Dajiuhu wetland in Shennongjia forest region[J]. Bulletin of Soil and Water Conservation, 2018, 38(1):208-213.
[24] Williams NM, Ward KL, Pope N, Isaacs R, Wilson J, et al. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States[J]. Ecol Appl, 2015, 25(8):2119-2131.
[25] Horton R, Cano E, Bulanon D, Fallahi E. Peach flower monitoring using aerial multispectral imaging[J]. Journal of Imaging, 2017, 3(1):2.
[26] Shen M, Chen J, Zhu X, Tang Y, Chen X. Do flowers affect biomass estimate accuracy from NDVI and EVI?[J]. Int J Remote Sens, 2010, 31(7/8):2139-2149.
[27] 黄双全, 郭友好. 传粉生物学的研究进展[J]. 科学通报, 2000, 45(3):225-237. Huang SQ, Guo YH. Research progress of pollination bio-logy[J]. Chinese Science Bulletin, 2000, 45(3):225-237.
计量
- 文章访问数: 411
- HTML全文浏览量: 4
- PDF下载量: 436