Relationship between climatic-niche evolution and species diversification in Annonaceae, a pantropical family
-
摘要: 热带地区较高的物种多样性与其气候条件有关,但气候如何影响热带地区物种的多样化却未有定论。为了解气候对热带植物多样性的影响,本研究以泛热带植物番荔枝科为研究对象,利用系统发育比较分析方法,计算了该科植物气候生态位的进化速率,并与该科的净多样化速率进行了相关性分析。结果显示:(1)番荔枝科气候生态位的进化速率较低,但新近分化类群的进化速率相对较高;(2)气候生态位下界(低温与低降水)的进化速率较上界(高温与高降水)快;(3)净多样化速率与气候生态位的进化速率,尤其是温度生态位的进化速率紧密相关。本研究揭示了番荔枝科植物气候生态位的进化对其物种多样性形成的重要作用,对该科在当前气候变化下的保护具有参考意义。Abstract: Higher species diversity in the tropics is associated with local climate. However, how climate influences species diversification in the tropics remains unclear. To understand the effects of climate on tropical species diversification, we calculated the rate of climatic-niche evolution in the pantropical family Annonaceae. and its correlation with net diversification using phylogenetic comparative analyses. Results showed that:(1) The rate of climatic-niche evolution in Annonaceae was low, but the rates for newly differentiated taxa were relatively high. (2) The evolutionary rates of the lower boundary of the climatic niche (low temperature and low precipitation) were faster than the upper boundary (high temperature and high precipitation). (3) Net diversification rates were closely related to climatic-niche evolution, especially the temperature niche rates. Our results revealed the importance of climatic-niche evolution in species diversification of Annonaceae, providing an important reference for its protection under current climate change.
-
Keywords:
- Annonaceae /
- Climatic niche /
- Evolutionary rate /
- Species diversification /
- Net diversification rate
-
-
[1] Serrano-Serrano ML, Rolland J, Clark JL, Salamin N, Perret M. Hummingbird pollination and the diversification of angiosperms:an old and successful association in Gesneriaceae[J]. Proc R Soc B-Biol Sci, 2017, 284(1852):20162816.
[2] Sun M, Folk RA, Gitzendanner MA, Soltis PS, Chen ZD, et al. Recent accelerated diversification in rosids occurred outside the tropics[J]. Nat Commun, 2020, 11(1):3333.
[3] Castro-Insua A, Gomez-Rodriguez C, Wiens JJ, Baselga A. Climatic niche divergence drives patterns of diversification and richness among mammal families[J]. Sci Rep, 2018, 8(1):8781.
[4] Jaramillo C, Rueda MJ, Mora G. Cenozoic plant diversity in the Neotropics[J]. Science, 2006, 311(5769):1893-1896.
[5] Kerkhoff AJ, Moriarty PE, Weiser MD. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis[J]. Proc Natl Acad Sci USA, 2014, 111(22):8125-8130.
[6] Clinebell RR, Phillips OL, Gentry AH, Stark N, Zuuring H. Prediction of neotropical tree and liana species richness from soil and climatic data[J]. Biodivers Conserv, 1995, 4(1):56-90.
[7] Folk RA, Stubbs RL, Mort ME, Cellinese N, Allen JM, et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation[J]. Proc Natl Acad Sci USA, 2019, 116(22):10874-10882.
[8] Huang XC, German DA, Koch MA. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events[J]. Ann Bot, 2020, 125(1):29-47.
[9] Wright S, Keeling J, Gillman L. The road from Santa Rosalia:A faster tempo of evolution in tropical climates[J]. Proc Natl Acad Sci USA, 2006, 103(20):7718-7722.
[10] Hua X, Wiens JJ. How does climate influence speciation?[J]. Am Nat, 2013, 182(1):1-12.
[11] Klein DR, Bruun HH, Lundgren R, Philipp M. Climate change influences on species interrelationships and distributions in high-Arctic Greenland[J]. Adv Ecol Res, 2008, 40:81-100.
[12] Kozak KH, Wiens JJ. Accelerated rates of climatic-niche evolution underlie rapid species diversification[J]. Ecol Lett, 2010, 13(11):1378-1389.
[13] Cooney CR, Seddon N, Tobias JA. Widespread correlations between climatic niche evolution and species diversification in birds[J]. J Anim Ecol, 2016, 85(4):869-878.
[14] Kozak KH, Wiens JJ. Climatic zonation drives latitudinal variation in speciation mechanisms[J]. Proc R Soc B-Biol Sci, 2007, 274(1628):2995-3003.
[15] Cadena CD, Kozak KH, Gomez JP, Parra JL, Mccain CM, et al. Latitude, elevational climatic zonation and speciation in New World vertebrates[J]. Proc R Soc B-Biol Sci, 2012, 279(1726):194-201.
[16] Moritz C, Patton JL, Schneider CJ, Smith TB. Diversification of rainforest faunas:An integrated molecular approach[J]. Annu Rev Ecol Syst, 2000, 31:533-563.
[17] Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, et al. Evolution and the latitudinal diversity gradient:speciation, extinction and biogeography[J]. Ecol Lett, 2007, 10(4):315-331.
[18] Quintero I, Wiens JJ. What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades[J]. Global Ecol Biogeogr, 2013, 22(4):422-432.
[19] Sheldon KS, Yang S, Tewksbury JJ. Climate change and community disassembly:impacts of warming on tropical and temperate montane community structure[J]. Ecol Lett, 2011, 14(12):1191-1200.
[20] Huey RB, Carlson M, Crozier L, Frazier M, Hamilton H, et al. Plants versus animals:Do they deal with stress in different ways?[J]. Integr Comp Biol, 2002, 42(3):415-423.
[21] Liu H, Ye Q, Wiens JJ. Climatic-niche evolution follows similar rules in plants and animals[J]. Nat Ecol Evol, 2020, 4(5):753-763.
[22] Xue B, Guo X, Landis JB, Sun M, Tang CC, et al. Acce-lerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae[J]. Mol Phylogen Evol, 2020, 142:106659.
[23] Thomas DC, Chatrou LW, Stull GW, Johnson DM, Harris DJ, et al. The historical origins of palaeotropical intercontinental disjunctions in the pantropical flowering plant family Annonaceae[J]. Perspect Plant Ecol Evol Syst, 2015, 17(1):1-16.
[24] Guo X, Tang CC, Thomas DC, Couvreur TLP, Saunders RMK. A mega-phylogeny of the Annonaceae:taxonomic placement of five enigmatic genera and support for a new tribe, Phoenicantheae[J]. Sci Rep, 2017, 7:7323.
[25] Punyasena SW, Eshel G, Mcelwain JC. The influence of climate on the spatial patterning of Neotropical plant families[J]. J Biogeogr, 2008, 35(1):117-130.
[26] Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF, et al. Early evolutionary history of the flowering plant family Annonaceae:steady diversification and boreotropical geodispersal[J]. J Biogeogr, 2011, 38(4):664-680.
[27] Erkens RHJ, Chatrou LW, Maas JW, van der Niet T, Savolainen V. A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America[J]. Mol Phylogen Evol, 2007, 44(1):399-411.
[28] Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny[J]. Am J Bot, 2018, 105(3):302-314.
[29] Magallon S, Gomez-Acevedo S, Sanchez-Reyes LL, Hernandez-Hernandez T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity[J]. New Phytol, 2015, 207(2):437-453.
[30] Jin Y, Qian HV.PhyloMaker:an R package that can generate very large phylogenies for vascular plants[J]. Ecography, 2019, 42(8):1353-1359.
[31] Silva MD, Funch LS, Da Silva LB, Cardoso D. A phylogenetic and functional perspective on the origin and evolutionary shifts of growth ring anatomical markers in seed plants[J]. Biol Rev, 2021, 96:842-876.
[32] Cubino JP, Lososova Z, Bonari G, Agrillo E, Attorre F, et al. Phylogenetic structure of European forest vegetation[J]. J Biogeogr, 2021, 48(4):903-916.
[33] Song HJ, Ordonez A, Svenning JC, Qian H, Yin X, et al. Regional disparity in extinction risk:Comparison of disjunct plant genera between eastern Asia and eastern North America[J]. Global Change Biol, 2021, 27(9):1904-1914.
[34] Paradis E, Claude J, Strimmer K. APE:Analyses of phylogenetics and evolution in R language[J]. Bioinforma-tics, 2004, 20(2):289-290.
[35] Qu YF, Wiens JJ. Higher temperatures lower rates of physiological and niche evolution[J]. Proc R Soc B-Biol Sci, 2020, 287(1931):20200823.
[36] Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees[J]. PLoS One, 2014, 9(2):e89543.
[37] Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, et al. BAMMtools:an R package for the analysis of evolutio-nary dynamics on phylogenetic trees[J]. Methods Ecol Evol, 2014, 5(7):701-707.
[38] Jezkova T, Wiens JJ. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change[J]. Proc R Soc B-Biol Sci, 2016, 283(1843):9.
[39] Jump AS, Penuelas J. Running to stand still:adaptation and the response of plants to rapid climate change[J]. Ecol Lett, 2005, 8(9):1010-1020.
[40] Sunday JM, Bates AE, Dulvy NK. Global analysis of thermal tolerance and latitude in ectotherms[J]. Proc R Soc B-Biol Sci, 2011, 278(1713):1823-1830.
[41] Wen Y, Qin DW, Leng B, Zhu YF, Cao KF. The physiological cold tolerance of warm-climate plants is correlated with their latitudinal range limit[J]. Biol Lett, 2018, 14(8):20180277.
[42] Chen YJ, Cao KF, Schnitzer SA, Fan ZX, Zhang JL, Bongers F. Water-use advantage for lianas over trees in tropical seasonal forests[J]. New Phytol, 2015, 205(1):128-136.
[43] Erkens RHJ, Chatrou LW, Couvreur TLP. Radiations and key innovations in an early branching angiosperm lineage (Annonaceae; Magnoliales)[J]. Bot J Linn Soc, 2012, 169(1):117-134.
[44] 文印. 基部被子植物水力结构进化及其与光合的关联——几个案例研究[D]. 南宁:广西大学, 2019. -
期刊类型引用(4)
1. 孙凡淑,党舒扬,郑东然,张贺,王宇,李玉花,吴昊. 紫杉醇生物合成与转录调控机制研究进展. 生物工程学报. 2024(05): 1380-1405 . 百度学术
2. 吴世龙,李妍妍. 紫杉醇药物资源的研究概况. 国土与自然资源研究. 2024(04): 79-83 . 百度学术
3. 刘晓楠,李静,祝晓熙,徐子硕,齐健,江会锋. 紫杉醇生物合成机制研究进展. 合成生物学. 2024(03): 527-547 . 百度学术
4. 王志新. 多媒体素材在植物学课程思政教学中的运用分析. 高教学刊. 2023(29): 177-180+184 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 581
- HTML全文浏览量: 9
- PDF下载量: 595
- 被引次数: 7