高级检索+

茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究

靳春梅, 周坤, 张今今

靳春梅, 周坤, 张今今. 茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究[J]. 植物科学学报, 2017, 35(1): 79-86. DOI: 10.11913/PSJ.2095-0837.2017.10079
引用本文: 靳春梅, 周坤, 张今今. 茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究[J]. 植物科学学报, 2017, 35(1): 79-86. DOI: 10.11913/PSJ.2095-0837.2017.10079
Jin Chun-Mei, Zhou Kun, Zhang Jin-Jin. Interactions of MADS-box transcription factors CsGLO1, CsGLO2 and CsAG in Camellia sinensis flower development[J]. Plant Science Journal, 2017, 35(1): 79-86. DOI: 10.11913/PSJ.2095-0837.2017.10079
Citation: Jin Chun-Mei, Zhou Kun, Zhang Jin-Jin. Interactions of MADS-box transcription factors CsGLO1, CsGLO2 and CsAG in Camellia sinensis flower development[J]. Plant Science Journal, 2017, 35(1): 79-86. DOI: 10.11913/PSJ.2095-0837.2017.10079
靳春梅, 周坤, 张今今. 茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究[J]. 植物科学学报, 2017, 35(1): 79-86. CSTR: 32231.14.PSJ.2095-0837.2017.10079
引用本文: 靳春梅, 周坤, 张今今. 茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究[J]. 植物科学学报, 2017, 35(1): 79-86. CSTR: 32231.14.PSJ.2095-0837.2017.10079
Jin Chun-Mei, Zhou Kun, Zhang Jin-Jin. Interactions of MADS-box transcription factors CsGLO1, CsGLO2 and CsAG in Camellia sinensis flower development[J]. Plant Science Journal, 2017, 35(1): 79-86. CSTR: 32231.14.PSJ.2095-0837.2017.10079
Citation: Jin Chun-Mei, Zhou Kun, Zhang Jin-Jin. Interactions of MADS-box transcription factors CsGLO1, CsGLO2 and CsAG in Camellia sinensis flower development[J]. Plant Science Journal, 2017, 35(1): 79-86. CSTR: 32231.14.PSJ.2095-0837.2017.10079

茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究

基金项目: 

陕西省自然基础研究计划项目(2014JM3075);中央高校基本科研业务费专项资金资助项目(GK201503048)。

详细信息
    作者简介:

    靳春梅(1992-),女,硕士研究生,研究方向为植物遗传(E-mail:1210791162@qq.com)。

    通讯作者:

    张今今,E-mail:zhangjinjin@snnu.edu.cn

  • 中图分类号: Q943.2

Interactions of MADS-box transcription factors CsGLO1, CsGLO2 and CsAG in Camellia sinensis flower development

Funds: 

This work was supported by grants from the Natural Basic Research Projects in Shaanxi Province (2014JM3075) and Fundamental Research Funds for the Central Universities (GK201503048).

  • 摘要: 利用酵母双杂交方法和双分子荧光互补技术(BiFC)研究了茶树(Camellia sinensis(L.)O.Kuntze)花发育MADS-box的B类转录因子CsGLO1、CsGLO2与C类转录因子CsAG间的互作关系及其可能发生互作的亚细胞定位。通过构建5个酵母表达载体,利用酵母单杂交实验检测了3个蛋白的转录激活活性,并通过酵母双杂交实验分析了蛋白间的互作关系。结果显示,3个蛋白均无转录激活活性,且两两之间可发生相互作用。进一步构建6个BiFC表达载体,采用压力注射法瞬时浸染烟草(Nicotiana benthamiana L.)叶表皮细胞,并利用激光共聚焦显微镜观察荧光信号,结果表明茶树B类CsGLO与C类CsAG蛋白可在植物活细胞内形成同源和异源二聚体,并具有在细胞质中发生互作的特定模式。本研究可为利用分子生物学技术抑制茶树“花果同现”现象提供理论依据。
    Abstract: In this study, the interactions between MADS-box B transcription factors GLO1 and CsGLO2, and C transcription factor CsAG in Camellia sinensis L. in relation to flower development as well as their possible subcellular localizations were investigated using the yeast two-hybrid method and bimolecular fluorescence complementation (BiFC). In this study, five yeast expression vectors were constructed and the transcriptional activation activities of the three proteins were tested by yeast one-hybridization. The interactions among the three proteins were further analyzed by yeast two-hybrid assay. The results showed that the three proteins had no transcriptional activation activity, but interactions did occur among them. Six BiFC expression vectors were constructed and transformed into the leaf epidermal cells of tobacco (Nicotiana benthamiana L.) by pressure injection. The fluorescence signals were then observed by confocal laser scanning microscopy. The results showed that the three proteins could form homo- and heterodimers, and had specific patterns of interaction in the cytoplasm. This study could provide a theoretical basis for the inhibition of C. sinensis ‘flower and fruit present’ using molecular biology techniques.
  • [1] 叶乃兴, 刘金英, 饶耿慧. 茶树的开花习性与茶树花产量[J]. 福建茶业, 2008, 32(4):16-18.

    Ye NX, Liu JY, Rao GH. Flowering habit and flower yield of tea plant[J]. Tea In Fujian, 2008, 32(4):16-18.

    [2] 杨昌云, 朱永兴. 茶树生殖生长的影响因素及控制方法[J]. 中国茶叶,1999(5):6-7.

    Yang CY, Zhu YX. Influencing factors and control methods of reproductive growth of tea plant[J]. China Tea, 1999(5):6-7.

    [3]

    Bemer M, Angenent GC. Floral organ initiation and deve-lopment[J]. Journal of the Royal Asiatic Society, 2010, 100(1):29-36.

    [4]

    Causier B, Schwarz-Sommer Z, Davies B. Floral organ identity:20 years of ABCs[J]. Semin Cell Dev Biol, 2010, 21(1):73-79.

    [5]

    ÓMaoiléidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development[J]. New Phytologist, 2014, 201(1):16-30.

    [6]

    Kramer EM, Dorit RL, Irish VF. Molecular evolution of genes controlling petal and stamen development:duplication and divergence within the[STXFX]APETALA3[STXFZ] and PISTILLATA MADS-box gene lineages[J]. Genetics, 1998, 149(2):765-783.

    [7]

    Wuest SE, Wellmer F. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA[J]. P Natl Acad Sci USA, 2012, 109(33):13452-13457.

    [8]

    Sundstr m JF, Nakayama N, Glimelius K, Irish VF. Direct regulation of the floral homeotic[STXFX]APETALA1[STXFZ], gene by APETALA3 and PISTILLATA in Arabidopsis[J]. Plant J,2006, 46(4):593-600.

    [9]

    Gómez-Mena C, De FS, Costa MM, Angenent GC, Sablowski R. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis[J]. Development, 2005, 132(3):429-438.

    [10]

    Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors[J]. Nature, 1990, 346(6279):35-39.

    [11]

    Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. The[STXFX]SEP4[STXFZ] gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Curr Biol, 2004, 14(21):1935-1940.

    [12]

    Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J]. Nature, 2001, 409(6819):525-529.

    [13]

    Theissen G, Saedler H. Plant biology. Floral quartets[J]. Nature, 2001, 409(6819):469-471.

    [14]

    Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J. Multicolor bimolecular fluorescence complemen-tation reveals simultaneous formation of alternative CBL/CIPK complexes in planta[J]. Plant J, 2008, 56(3):505-516.

    [15] 周坤. 茶树MADS-box家族B类基因[STXFX]CsGLO1和CsGLO2[STXFZ]的克隆及其与C类基因CsAG的功能研究[D]. 陕西:陕西师范大学, 2015. Zhou K. Cloning of[STXFX]CsGLO1 and CsGLO2[STXFZ] of the MADS-box family B gene and its function on CsAG in Camellia sinensis[D].Shaanxi:Shaanxi Normal University, 2015.
    [16] 程国山. 茶树CSAG基因克隆及AG基因系统进化分析[D]. 陕西:陕西师范大学, 2014.

    Cheng GS. Cloning of CsAG gene and phylogenetic analysis of CsAG gene in Camellia sinensis[D]. Shaanxi:Shaanxi Normal University, 2014.

    [17] 欧阳沫, 唐潇, 黄惜, 袁红梅. 巴西橡胶树[STXFX]HbICE1[STXFZ]基因酵母菌双杂交诱饵载体的构建及互作蛋白的筛选[J]. 植物科学学报, 2016, 34(2):255-262.

    OuYang M, Tang X, Huang X, Yuan HM. Construction of yeast two-hybrid bait vector and the screening of proteins interacting with[STXFX]HbICE1[STXFZ] in Hevea brasiliensis[J]. Plant Science Journal, 2016, 34(2):255-262.

    [18]

    Waadt R, Schlücking K, Schroeder JI, Kudla J. Proteinfragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations[J]. Methods Mol Biol, 2014, 1062:629-658.

    [19]

    Gramzow L, Theissen G. A hitchhiker's guide to the MADS world of plants[J]. Genome Biol, 2010, 11(6):1-11.

    [20]

    ÓMaoiléidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, Kwasniewska K, Das P, Lohan AJ, Loftus B, Graciet E, Wellmer F. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS[J]. Plant Cell, 2013, 25(7):2482-2503.

    [21]

    Zhang JS, Li Z, Zhao J, Quan H, Zhao M, He C. Deciphering the Physalis floridana double-layered-[STXFX]lantern1[STXFZ] mutant provides insights into functional divergence of the GLOBOSA duplicates within the Solanaceae[J]. Plant Physiol, 2014, 164(2):748-764.

    [22]

    Zhang S, Zhang JS, Zhao J, He C. Distinct subfunctiona-lization and neofunctionalization of the B-class MADS-box genes in Physalis floridana[J]. Planta, 2015, 241(2):387-402.

    [23]

    Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L. Interaction study of MADS-domain proteins in tomato[J]. J Exp Bot, 2008, 59(8):2253-2265.

    [24]

    Geuten K, Irish V. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions[J]. Plant Cell, 2010, 22(8):2562-2578.

    [25]

    Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K. Pistillata-duplications as a mode for floral diversification in (Basal) Asterids[J]. Mol Biol Evol, 2009, 26(11):2627-2645.

    [26]

    Mcgonigle B, Bouhidel K, Irish VF. Nuclear localization of the Arabidopsis[STXFX]APETALA3[STXFZ] and PISTILLATA homeotic gene products depends on their simultaneous expression[J]. Gene Dev, 1996, 10(14):1812-1821.

    [27]

    Smaczniak C, Immink RG, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development[J]. Plant J, 2012, 109(5):1560-1565.

    [28]

    Theissen G. Development of floral organ identity:stories from the MADS house[J]. Currt Opin Plant Biol, 2001, 4(1):75-85.

计量
  • 文章访问数:  1167
  • HTML全文浏览量:  4
  • PDF下载量:  1240
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-25
  • 网络出版日期:  2022-10-31
  • 发布日期:  2017-02-27

目录

    /

    返回文章
    返回