Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort
-
摘要: 对菘蓝(Isatis indigotica Fort.)CYP83B1基因进行了克隆与表达模式分析。结果显示,IiCYP83B1基因全长为1652 bp,包含2个外显子和1个内含子;cDNA全长为1500 bp,编码499个氨基酸。IiCYP83B1编码的蛋白没有跨膜结构域和信号肽,主要定位于内质网膜,属于亲水性蛋白,二级结构主要由无规则卷曲螺旋和α-螺旋组成,与萝卜(Raphanus sativus Linn.)、欧洲油菜(Brassica napus L.)、甘蓝(Brassica oleracea L.)和芜菁(Brassica rapa L.)等植物的CYP83B1蛋白具有较高的同源性。qRT-PCR分析结果表明,IiCYP83B1基因在菘蓝的根、茎、叶、花和果中均有表达,且以叶中的表达量最高;在幼苗期、生长期和花期稳定表达且均显著高于萌芽期;茉莉酸甲酯(methyl jasmonate,MeJA)和葡萄糖(glucose,Glu)能够显著促进该基因的表达,而低温(4℃)和水杨酸(salicylic acid,SA)处理对其表达具有一定的抑制效应。本研究结果可为进一步探讨IiCYP83B1基因的功能提供参考。Abstract: The CYP83B1 gene of Isatis indigotica Fort. was cloned and its expression patterns were analyzed. Results showed that the length of the IiCYP83B1 gene was 1652 bp, and included two exons and one intron. The full length cDNA of IiCYP83B1 was 1500 bp, encoding a protein of 499 amino acids. IiCYP83B1 was a hydrophobic protein located in the endoplasmic reticulum, without a transmembrane domain or signal peptide. Its secondary structure mainly included alpha helixes and irregular coils. Homologous comparison illustrated that IiCYP83B1 has close relationship with Raphanus sativus Linn., Brassica napus L., Brassica oleracea L., and Brassica rapa L. qRT-PCR analysis indicated that IiCYP83B1 was expressed in root, stem, flower, and fruit, and highly expressed in leaf. It was also highly expressed in the seedling, vegetative growth, and flowering stages, compared with the germination period. Moreover, IiCYP83B1 could be induced significantly by methyl jasmonate (MeJA) and glucose (Glu), but repressed by low temperature (4℃) and salicylic acid (SA). Results in this experiment provide reference for further functional study on IiCYP83B1.
-
Keywords:
- Isatis indigotica Fort. /
- CYP83B1 /
- Gene clone /
- Bioinformatics /
- Expression pattern
-
-
[1] 陈宇航, 郭巧生, 邓乔华, 田汉卿. 菘蓝不同种质活性成分动态积累及其药材品质比较[J]. 中国中药杂志, 2012, 37(11):1541-1545. Chen YH, Guo QS, Deng QH, Tian HQ. Dynamic accumulations of bioactive components in different germplasm Isatis indigotica and comparative of its quality of medical material[J]. China Journal of Chinese Materia Medica, 2012, 37(11):1541-1545.
[2] 杨飞, 徐延浩. 四倍体菘蓝基因组DNA甲基化的甲基化敏感扩增多态性分析[J]. 中草药, 2013, 44(3):344-348. Yang F, Xu YH. Analysis on genome DNA methylation of tetraploid Isatis indigotica by methylation sensitive amplification polymorphism[J]. Chinese Traditional and Herbal Drugs, 2013, 44(3):344-348.
[3] 郑剑玲, 王美惠, 杨秀珍, 吴立军. 大青叶和板蓝根提取物的抑菌作用研究[J]. 中国微生态学杂志, 2003, 15(1):18-19. Zheng JL, Wang MH, Yang XZ, Wu LJ. Study on bacte-riostasis of Isatis indigotic Fort.[J]. Chinese Journal of Microecology, 2003, 15(1):18-19.
[4] 赵宇, 孔稳稳, 沙伟, 李晶. 脂肪族芥子油苷侧链修饰酶基因[STXFX]FMOGS-OX4[STXFZ]表达模式分析[J]. 植物科学学报, 2013, 31(4):406-414. Zhao Y, Kong WW, Sha W, Li J. Expression pattern of[STXFX]FMOGS-OX4,[STXFZ] a biosynthetic gene involved in aliphatic glucosinolate side-chain modification[J]. Plant Science Journal, 2013, 31(4):406-414.
[5] Yan XF, Chen SX. Regulation of plant glucosinolate metabolism[J]. Planta, 2007, 226(6):1343-1352.
[6] Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa[J]. Gene, 2011, 487(2):135-142.
[7] 陈亚州, 阎秀峰. 芥子油苷在植物-生物环境关系中的作用[J]. 生态学报, 2007, 27(6):2584-2593. Chen YZ, Yan XF. The role of glucosinolates in plant-biotic environment interactions[J]. Acta Ecologica Sinica, 2007, 27(6):2584-2593.
[8] Plate AYA, Gallaher DD. Effects of indole-3-carbinol and phenethyl isothiocyanate on colon carcinogenesis induced by azoxymethane in rats[J]. Carcinogenesis, 2006, 27(2):287-292.
[9] Wittstock U, Halkier BA. Glucosinolate research in the Arabidopsis era.[J]. Trends Plant Sci, 2002, 7(6):263-270.
[10] Zhu B, Wang Z, Yang J, Zhu Z, Wang H. Isolation and expression of glucosinolate synthesis genes[STXFX]CYP83A1 and CYP83B1[STXFZ] in pak choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S. H. Lee) Hanelt)[J]. Int J Mol Sci, 2012, 13(5):5832-5843.
[11] Grubb CD, Abel S. Glucosinolate metabolism and its control[J]. Trends Plant Sci, 2006, 11(2):89-100.
[12] Grubb CD, Zipp BJ, Ludwig-Mülle J, Masuno MN, Molinski TF, Abel S. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis[J]. Plant J, 2004, 40(6):893-908.
[13] Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C. The[STXFX]SUR2[STXFZ] gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulat or of auxin homeostasis[J]. Proc Natl Acad Sci USA, 2000, 97(26):14819-14824.
[14] Bak S, Feyereisen R. The involvement of two P450 Enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis[J]. Plant Physiol, 2001, 127(1):108-118.
[15] Bak S, Tax FE, Fedmann KA, Galbraitha DW, Feyereisena R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis[J]. Plant Cell, 2001, 13(1):101-111.
[16] Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metaboli-zing oximes in the biosynthesis of glucosinolates in Arabidopsis[J]. Plant Physiol, 2003, 133(1):63-72.
[17] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4), 402-408.
[18] Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides:SignalP 3.0[J]. J Mol Biol, 2004, 340(4):783-795.
[19] 郭文芳, 刘德春, 杨莉, 庄霞, 张涓涓, 王书胜, 刘勇. 柑橘[STXFX]MYB15[STXFZ]基因的克隆与表达分析[J]. 植物科学学报, 2015, 33(6):808-818. Guo WF, Liu DC, Yang L, Zhuang X, Zhang JJ, Wang SS, Liu Y. Cloning and expression analysis of[STXFX]MYB15[STXFZ] genes from Citrus[J]. Plant Science Journal, 2015, 33(6):808-818.
[20] Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modeling[J]. Bioinformatatics, 2006, 22(2):195-201.
[21] 石璐, 李梦莎, 王丽华, 于萍, 李楠, 国静, 阎秀峰. COI1参与茉莉酸调控拟南芥吲哚族芥子油苷生物合成过程[J]. 生态学报, 2012, 32(17):5438-5444. Shi L, Li MS, Wang LH, Yu P, Li N, Guo J, Yan XF. COI1 is involved in jasmonate-induced indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Acta Ecolo-gica Sinica, 2012, 32(17):5438-5444.
[22] Frerigmann H, Gigolashvili T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Mol Plant, 2014, 7(5):814-828.
[23] Schreiner M, Krumbein A, Knorr D, Smetanska I. Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate[J]. J Agric Food Chem, 2011, 59(4):1400-1405.
[24] Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I. DOF transcription factor AtDof1.1(OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis[J]. Plant J, 2006, 47(1):10-24.
[25] Kliebenstein DJ, Figuth A, Mitchell-Olds T. Genetic architecture of plastic methyl jasmonate response in Arabidopsis thaliana[J]. Genetics, 2002, 161(4):1685-1696.
[26] Wei J, Miao H, Wang Q. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes in Brassica sprouts[J]. Sci Hortic, 2011, 129(4):535-540.
[27] Gigolashvili T, Yatusevich R, Berger B, Müller C, Flugge UI. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana[J]. Plant J, 2007, 51(2):247-261.
[28] Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW. Establishing glucose-and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine[J]. Genome Res, 2006, 16(3):414-427.
计量
- 文章访问数: 1120
- HTML全文浏览量: 11
- PDF下载量: 974