[1] 刘红梅, 张爱林, 皇甫超河, 李洁, 王慧, 杨殿林. 氮沉降增加对贝加尔针茅草原土壤微生物群落结构的影响[J]. 生态环境学报, 2017, 26(7):1100-1106. Liu HM, Zhang AL, Huangfu CH, Li J, Wang H, Yang DL. Effects of increasing nitrogen deposition on soil microbial community structure of Stipa baicalensis steppe in Inner Mongolia, China[J]. Ecology and Environment Sciences, 2017, 26(7):1100-1106.
[2] Mao Q, Lu X, Mo H, Gundersen P, Mo J. Effects of simulated n deposition on foliar nutrient status, n metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest[J]. Sci Total Environ, 2018, 610-611:555-562.
[3] 王玲, 施建军, 董全民, 尹亚丽, 王晓丽, 等. 氮、磷添加对高寒草原群落多样性和生物量的影响[J]. 草地学报, 2019, 27(6):1633-1642. Wang L, Shi JJ, Dong QM, Yin YL, Wang XL, et al. Effects of nitrogen and phosphorus addition on community diversity and biomass of alpine steppe[J]. Acta Agrestia Sinica, 2019, 27(6):1633-1642.
[4] 文海燕, 傅华, 郭丁. 黄土高原典型草原优势植物凋落物分解及养分释放对氮添加的响应[J]. 生态学报, 2017, 37(6):2014-2022. Wen HY, Fu H, Guo D. Influence of nitrogen addition on Stipa bungeana and Heteropappus altaicus litter decomposition and nutrient release in a steppe located on the Loess Plateau[J]. Acta Ecologica Sinica, 2017, 37(6):2014-2022.
[5] 贾丙瑞.凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8):648-657. Jia BR. Litter decomposition and its underlying mechanisms[J]. Chinese Journal of Plant Ecology, 2019, 43(8):648-657.
[6] Britton AJ, Mitchell RJ, Fisher JM, Riach DJ, Taylor AF. Nitrogen deposition drives loss of moss cover in alpine moss-sedge heath via lowered C:N ratio and accelerated decomposition[J]. New Phytol, 2018, 218(2):470-478.
[7] Li YB, Bezemer TM, Yang JT, Lü XT, Li XY, et al. Changes in litter quality induced by N deposition alter soil microbial communities[J]. Soil Biol Biochem, 2019, 130:33-42.
[8] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响[J]. 生物多样性, 2019, 27(6):607-618. Zou AL, Ma SH, Ni XF, Cai Q, Li XP, Ji CJ. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing[J]. Biodiversity Science, 2019, 27(6):607-618.
[9] 王晶苑, 张心昱, 温学发, 王绍强, 王辉民. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013, 33(5):1337-1346. Wang JY, Zhang XY, Wen XF, Wang SQ, Wang HM. The effect of nitrogen deposition on forest soil organic matter and litter decompostion and the microbial mechanism[J]. Acta Ecologica Sinica, 2013, 33(5):1337-1346.
[10] Tan X, Machmuller MB, Cotrufo MF, Shen W. Shifts in fungal biomass and activities of hydrolase and oxidative enzymes explain different responses of litter decomposition to nitrogen addition[J]. Biol Fert Soil, 2020, 56(4):423-438.
[11] 周嘉聪, 刘小飞, 郑永, 纪宇皝, 李先锋, 等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响[J]. 生态学报, 2017, 37(1):127-135. Zhou JC, Liu XF, Zheng Y, Ji YH, Li XF, et al. Effects of nitrogen deposition on soil microbial biomass and enzyme activities in Castanopsis carlesii natural forests in subtropical regions[J]. Acta Ecologica Sinica, 2017, 37(1):127-135.
[12] Zhuang L, Liu Q, Liang Z, You C, Xu Z. Nitrogen additions retard nutrient release from two contrasting foliar litters in a subtropical forest, southwest China[J]. Forests, 2020, 11(4):e377.
[13] 杨丽丽, 龚吉蕊, 刘敏, 杨波, 张子荷, 等. 氮沉降对草地凋落物分解的影响研究进展[J]. 植物生态学报, 2017, 41(8):894-913. Yang LL, Gong JR, Liu M, Yang B, Zhang ZH, et al. Advances in the effect of nitrogen deposition on grassland litter decomposition[J]. Chinese Journal of Plant Ecology, 2017, 41(8):894-913.
[14] Jing H, Wang G. Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the Loess Plateau of China[J]. Forest Ecol Manag, 2020, 476:e118465.
[15] 卢广超, 邵怡若, 薛立. 氮沉降对凋落物分解的影响研究进展[J]. 世界林业研究, 2014, 27(1):35-42. Lu GC, Shao YR, Xue L. Research progress in the effect of nitrogen deposition on litter decomposition[J]. World Forestry Research, 2014, 27(1):35-42.
[16] Dong L, Berg B, Sun T, Wang Z, Han X. Response of fine root decomposition to different forms of N deposition in a temperate grassland[J]. Soil Biol Biochem, 2020, 147:107845.
[17] Jing H, Wang G. Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the Loess Plateau of China[J]. Forest Ecol Manag, 2020, 476:118465.
[18] 段娜, 李清河, 多普增, 汪季. 植物响应大气氮沉降研究进展[J]. 世界林业研究, 2017, 32(4):6-11. Duan N, Li QH, Duo PZ, Wang J. Plant response to atmospheric nitrogen deposition:a research review[J]. World Forestry Research, 2017, 32(4):6-11.
[19] 刘桂要, 陈莉莉, 袁志友. 氮添加对黄土丘陵区油松人工林根际土壤微生物群落结构的影响[J]. 应用生态学报, 2019, 30(1):117-126. Liu GY, Chen LL, Yuan ZY. Effects of nitrogen addition on the structure of rhizosphere microbial community in Pinus tabuliformis plantations on Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2019, 30(1):117-126.
[20] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000.
[21] 邓长春, 李建平, 李勋, 唐仕姗, 杨万勤, 等. 马尾松人工林林窗大小对两种凋落叶难降解物质含量的影响[J]. 植物生态学报, 2015, 39(8):785-796. Deng CC, Li JP, Li X, Tang SS, Yang WQ, et al. Effects of forest gap size on litter recalcitrant components of two tree species in Pinus massoniana plantations[J]. Chinese Journal of Plant Ecology, 2015, 39(8):785-796.
[22] Triebwasser DJ, Tharayil N, Preston CM, Gerard PD. The susceptibility of soil enzymes to inhibition by leaf litter tannins is dependent on the tannin chemistry, enzyme class and vegetation history[J]. New Phytol, 2012, 196(4):1122-1132.
[23] 沈芳芳, 刘文飞, 吴建平, 袁颖红, 樊后保, 赵楠. 杉木人工林凋落物分解对氮沉降的响应[J]. 生态学报, 2019, 39(21):8078-8090. Shen FF, Liu WF, Wu JP, Yuan YH, Fan HB, Zhao N. Litter decomposition in a Chinese fir plantation in response to nitrogen deposition[J]. Acta Ecologica Sinica, 2019, 39(21):8078-8090.
[24] Yuan YH. Effects of nitrogen deposition on soil microbial biomass, microbial functional diversity and enzyme activities in fir plantations of subtropical China[J]. Adv Mat Res, 2013, 610-613:323-330.
[25] Song YY, Song CC, Ren JS, Zhang XH, Jiang L. Nitrogen input increases deyeuxia angustifolia litter decomposition and enzyme activities in a marshland ecosystem in sanjiang plain, Northeast China[J]. Wetlands, 2019, 39(3):549-557.
[26] Zhang TA, Chen HY, Ruan H. Global negative effects of nitrogen deposition on soil microbes[J]. ISME J, 2018, 12(7):1817-1825.
[27] Morrison EW, Pringle A, van Diepen LT, Frey SD. Simulated nitrogen deposition favors stress-tolerant fungi with low potential for decomposition[J]. Soil Biol Biochem, 2018, 125:75-85.
[28] 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响[J]. 植物生态学报, 2020, 44(3):214-227. Chen SL, Cai JS, Lin CF, Song HW, Yang YS. Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest[J]. Chinese Journal of Plant Ecology, 2020, 44(3):214-227.
[29] 汪金松, 王晨, 赵秀海, 张春雨, 李化山, 等. 模拟氮沉降对油松林单一及混合叶凋落物分解的影响[J]. 北京林业大学学报, 2015, 37(10):14-21. Wang JS, Wang C, Zhao XH, Zhang C, Li HS, et al. Effects of simulated nitrogen deposition on decomposition of single and mixed leaf litters in the plantation and natural forests of Pinus tabulaeformis[J]. Journal of Beijing Forestry University, 2015, 37(10):14-21.
[30] Chen F, Wang GG, Fang X, Wan S, Zhang Y, Liang C. Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply[J]. Plant Soil, 2019, 437:413-426.
[31] Zheng Z, Mamuti M, Liu H, Shu Y, Hu S, Wang X, et al. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China[J]. Forest Ecol Manag, 2017, 400:123-128.
[32] Berg B, MCclaugherty C. Plant Litter:Decomposition, Humus Formation, Carbon Sequestration[M]. 3rd ed. Berlin Heidelberg:Springer-Verlag, 2014.
[33] 张晓曦, 刘慧, 王博雅, 李佳佳, 雷航宇, 刘增文. 云杉与阔叶树种新鲜凋落叶混合分解特征[J]. 生态环境学报, 2019, 28(2):235-244. Zhang XX, Liu H, Wang BY, Li JJ, Lei HY, Liu ZW. Characteristics of the mixed decomposition of fresh litter of Picea asperata and broadleaved species[J]. Ecology and Environmental Sciences, 2019, 28(2):235-244.
[34] 何斌, 李青, 冯图, 薛晓辉, 李望军, 刘勇. 黔西北不同林龄马尾松人工林针叶-凋落物-土壤C、N、P化学计量特征[J]. 生态环境学报, 2019, 28(11):2149-2157. He B, Li Q, Feng T, Xue XH, Li WJ, Liu Y. Stoichiometry characteristics of C, N, and P in needle leaves, litter, and soil during stand development in a Pinus massoniana plantation in northwest Guizhou province[J]. Ecology and Environmental Sciences, 2019, 28(11):2149-2157. |