Identification of TCP transcription factors in Ipomoea batatas (L.) Lam. genome and expression analysis under stress
Bi Chu-Yun1,2, Huang Xiao-Fang1,2, Wang He-Shou3, Chen Qi-Jun4, Hu Yun-Zhuo1, Huang Bi-Fang5, Xu Ming1,2, Yang Zhi-Jian1,2, Chen Xuan-Yang1,2,5, Lin Shi-Qiang1,6
1. Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou 350002, China;
2. College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
3. Ningde Agricultural and Rural Bureau, Ningde, Fujian 352100, China;
4. Seed Centre of Fujian, Fuzhou 350003, China;
5. Key Lab of Genetics, Breeding and Multiple Application of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
6. College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
The unique TCP transcription factor family participates in various physiological and biochemical processes in plants. Based on the whole-genome sequence of Ipomoea batatas (L.) Lam., we used bioinformatics to screen and identify TCP transcription factors and analyze differential expression of TCP genes in seedlings under Fusarium oxysporum f. sp. batatas stress and in tubers under low temperature stress during storage. Results showed that there were 27 TCP transcription factors in the I. batatas genome, including 13 in Class Ⅰ, eight in Class Ⅱ(CIN), and six in Class Ⅱ(CYC/TB1). The I. batatas TCP genes were unevenly distributed in the 15 chromosomes and formed six pairs of genes with potential duplication relationships. The Class Ⅱ(CYC/TB1) I. batatas transcription factors contained an R domain with conserved amino acid sequences. There were 10 conserved motifs within the I. batatas TCP transcription factors, the amino acid lengths of which ranged from 15 to 60. Motif-1 contained a TCP domain and motif-3 contained an R domain. The types of conserved motifs for different groups varied to some extent. Analysis of transcriptomics data of I. batatas identified two differentially expressed genes under F. oxysporum f. sp. batatas infection during the seedling stage and 11 differentially expressed genes under low temperature stress during tuber storage. This study lays a foundation for the functional study of TCP genes and provides a reference for resistance breeding of I. batatas.
[1] Crawford B, Nath U, Carpenter R, Coen E. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of antirrhinum[J].Plant Physiol, 2004, 135(1):244-253.
[2] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J].Nature, 1997, 386(6624):485-488.
[3] Luo D, Carpenter R, Vincent C, Copsey L, Coen E. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383(6603):794-799.
[4] Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J]. Plant Cell, 1997, 9(9):1607-1619.
[5] Cubas P, Lauter N, Doebly J, Coen E. The TCP domain:a motif found in proteins regulating plant growth and development[J]. Plant J, 1999, 18(2):215-222.
[6] Howarth D, Donoghue M. Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots[J]. Proc Natl Acad Sci USA, 2006, 103(24):9101-9106.
[7] Zhang C, Ding Z, Wu K, Yang L, Li Y, et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice[J]. Mol Plant, 2016, 9(9):1302-1314.
[8] Danisman S, Wal F, Dhondt S, Waites R, De Folter S, et al. Arabidopsis ClassⅠ and ClassⅡ TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J]. Plant Physiol, 2012, 159(4):1511-1523.
[9] Li S, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana[J].Plant J, 2013, 76(6):901-913.
[10] Vadde BVL, Challa K, Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana[J]. Plant J, 2018, 93(2):259-269.
[11] Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263.
[12] Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, et al. Regulation of LANCEOLATE by miR319is required for compound-leaf development in tomato[J].Nat Genet, 2007, 39(6):787-791.
[13] Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J].PLoS Biol, 2008, 6(9):e230.
[14] Giraud E, Ng S, Carrie C, Duncan O, Low J, et al. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(12):3921-3934.
[15] Guan P, Ripoll JJ, Wang R, Vuong L, Bailey-Steinitz LJ, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proc Natl Acad Sci USA, 2017, 114(9):2419-2424.
[16] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Mol Gen Genet, 1994, 244(6):563-571.
[17] Wang W, Qiu X, Yang Y, Kim HS, Jia X, et al. Sweetpotato bZIP transcription factor IbABF4 confers tolerance to multiple abiotic stresses[J]. FrontPlant Sci, 2019, 10:630.
[18] Meng X, Liu S, Dong T, Xu T, Ma D, et al. Comparative transcriptome and proteome analysis of salt-tolerant and salt-sensitive sweet potato and overexpression of IbNAC7 confers salt tolerance in Arabidopsis[J]. Front Plant Sci, 2020, 11:572540.
[19] 黄小芳, 毕楚韵, 黄碧芳, 许明, 杨志坚, 等. 甘薯基因组R2R3-MYB转录因子鉴定与分析[J].分子植物育种, 2020, 18(32):1-13. Huang XF, Bi CY, Huang BF, Xu M, Yang ZJ, et al. Identification and analysis of R2R3-MYB genes in sweet potato genome[J]. Molecular Plant Breeding, 2020, 18(32):1-13.
[20] Lin Y, Zou W, Lin S, Onofua D, Yang Z, et al. Transcriptome profiling and digital gene expression analysis of sweet potato for the identification of putative genes involved in the defense response against Fusarium oxysporum f. sp. batatas[J]. PLoS One, 2017, 12(11):e0187838.
[21] Ji CY, Kim HS, Lee CJ, Kim SE, Lee HU, et al. Compa-rative transcriptome profiling of tuberous roots of two sweetpotato lines with contrasting low temperature tolerance during storage[J]. Gene, 2020, 727:144244.
[22] Cubas P. Role of TCP genes in the evolution of key morphological characters in Angiosperms[M]//Cronk QCB, Bateman RM, Hawkins JA, eds. Developmental Genetics and Plant Evolution. London:Taylor and Francis Ltd., 2002.
[23] Innan H, Kondrashov F. The evolution of gene duplications:classifying and distinguishing between models[J]. Nat Rev Genet, 2010, 11(2):97-108.
[24] Martín-Trillo M, Cubas P. TCP genes:a family snapshot ten years later[J]. Trends Plant Sci, 2010, 15(1):31-39.
[25] Yao X, Ma H, Wang J, Zhang DB. Genome-wide compa-rative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J]. J Integr Plant Biol, 2007, 49(6):885- 897.
[26] 冀志蕊, 谷彦冰, 董庆龙, 迟福梅, 乔壮, 等. 葡萄TCP基因家族全基因组鉴定和分析[J]. 基因组学与应用生物学, 2015, 34(10):2194-2199. Ji ZR, Gu YB, Dong QL, Chi FM, Qiao Z, et al. Genome-wide identification and analysis of TCP gene family in grape[J]. Genomics and Applied Biology, 2015, 34(10):2194-2199.
[27] 郑玲, 白雪婷, 李会云. 高粱TCP基因家族全基因组鉴定及表达分析[J]. 河南农业科学, 2019, 48(10):30-36. Zhao L, Bai XT, Li HY. Genome-wide identification and expression analysis of TCP gene family in Sorghum bicolor L.[J]. Journal of Henan Agricultural Sciences, 2019, 48(10):30-36.
[28] 赵一彤, 魏戏梦, 薛超玲, 李景刚, 赵锦. 枣TCP家族基因鉴定及其表达分析[J]. 河北农业大学学报, 2019, 42(5):39-45. Zhao YT, Wei XM, Xue CL, Li JG, Zhao J. Genome-wide identification of the TCP gene family and expression analysis in Chinese jujube[J]. Journal of Hebei Agricultural University, 2019, 42(5):39-45.
[29] 张春雷. 拟南芥TCP15、TCP22基因功能的研究[D]. 兰州:兰州大学, 2012.
[30] Rueda-Romero P, Barrero-Sicilia C, Gómez-Cadenas A, Carbonero P, Oñate-Sánchez L. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14[J]. J Exp Bot, 2012, 63(5):1937-1949.