[1] Chen F, Bradford KJ. Expression of an expansin is asso-ciated with endosperm weakening during tomato seed germination[J]. Plant Physiol, 2000, 124(3):1265-1274.
[2] Cho HT, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis[J]. Plant Cell, 2002, 14(12):3237-3253.
[3] Lee HW, Kim MJ, Kim NY, Lee SH, Kim J. LBD18 acts as a transcriptional activator that directly binds to the EXPANSIN14 promoter in promoting lateral root emergence of Arabidopsis[J]. Plant J, 2013, 73(2):212-224.
[4] Lee HW, Kim J. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response[J]. Plant Cell Physiol, 2013, 54(10):1600-1611.
[5] Li XX, Zhao J, Tan ZY, Zeng RS, Liao H. GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development[J]. Plant Physiol, 2015, 169(4):2640-2653.
[6] Cho HT, Cosgrove DJ. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2000, 97(17):9783-9788.
[7] Goh HH, Sloan J, Dorca-Fornell C, Fleming A. Inducible repression of multiple expansin genes leads to growth suppression during leaf development[J]. Plant Physiol, 2012, 159(4):1759-1770.
[8] Devi MJ, Taliercio EW, Sinclair TR. Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits[J]. J Exp Bot, 2015, 66(7):1845-1850.
[9] Wei PC, Zhang XQ, Zhao P, Wang XC. Regulation of stomatal opening by the guard cell expansin AtEXPA1[J]. Plant Signal Behav, 2011, 6(5):740-742.
[10] Lee Y, Kende H. Expression of β-expansins is correlated with internodal elongation in deepwater rice[J]. Plant Physiol, 2001, 127(2):645-654.
[11] Li J, Hu XS, Huang X, Huo H, Li J, Zhang D. Functional identification of an EXPA gene (NcEXPA8) isolated from the tree Neolamarckia cadamba[J]. Biotechnol Biotec Eq, 2017, 31(6):1116-1125.
[12] Sasidharan R, Chinnappa CC, Staal M, Elzenga JTM, Yokoyama R, et al. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases[J]. Plant Physiol, 2010, 154(2):978-990.
[13] Gray-Mitsumune M, Mellerowicz EJ, Abe H, Schrader J, Winzéll A, et al. Expansins abundant in secondary xylem belong to subgroup A of the α-expansin gene family[J]. Plant Physiol, 2004, 135(3):1552-1564.
[14] Cosgrove DJ, Bedinger P, Durachko DM. Group I allergens of grass pollen as cell wall-loosening agents[J]. Proc Natl Acad Sci USA, 1997, 94(12):6559-6564.
[15] Han YY, Li AX, Li F, Zhao MR, Wang W. Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation[J]. Plant Physiol Biochem, 2012, 54:49-58.
[16] Hiwasa K, Rose JKC, Nakano R, Inaba A, Kubo Y. Differential expression of seven α-expansin genes during growth and ripening of pear fruit[J]. Physiol Plant, 2003, 117(4):564-572.
[17] McQueen-Mason S, Cosgrove DJ. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension[J]. Proc Natl Acad Sci USA, 1994, 91(14):6574-6578.
[18] Cosgrove DJ. Loosening of plant cell walls by expansins[J]. Nature, 2000, 407(6802):321-326.
[19] Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, et al. Nomenclature for members of the expansin superfamily of genes and proteins[J]. Plant Mol Biol, 2004, 55(3):311-314.
[20] Warington K. The effect of boric acid and borax on the broad bean and certain other plants[J]. Ann Bot, 1923, 37(148):629-672.
[21] Brown P, Bellaloui N, Wimmer M, Bassil E, Ruiz J, et al. Boron in plant biology[J]. Plant Biol, 2002, 4:205-223.
[22] Kobayashi M, Matoh T, Azuma J. Two chains of rhamnogalacturonanⅡ are cross-linked by borate-diol ester bonds in higher plant cell walls[J]. Plant Physiol, 1996, 110(3):1017-1020.
[23] O'Neill MA, Eberhard S, Albersheim P, Darvill AG. Requirement of borate cross-linking of cell wall RhamnogalacturonanⅡ for Arabidopsis growth[J]. Science, 2001, 294(5543):846-849.
[24] Funakawa H, Miwa K. Synthesis of borate cross-linked rhamnogalacturonanⅡ [J]. Front Plant Sci, 2015, 6:223.
[25] Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Beato VM, Rexach J, Navarro MT. The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency[J]. Environ Exp Bot, 2008, 63(1):351-358.
[26] Peng LS, Zeng CY, Shi L, Cai HM, Xu FS. Transcriptional profiling reveals adaptive responses to boron deficiency stress in Arabidopsis[J]. Z Naturforsch C, 2012, 67(9-10):510-524.
[27] Redondo-Nieto M, Maunoury N, Mergaert P, Kondorosi E, Bonilla I, Bolaños L. Boron and calcium induce major changes in gene expression during legume nodule organogenesis. Does boron have a role in signalling?[J] New Phytol,2012, 195(1):14-19.
[28] Zhou T, Hua YP, Zhang BC, Zhang XQ, Zhou YH, et al. Low-B tolerance strategies involving the pectin-mediated cell wall mechanical properties in Brassica napus[J]. Plant Cell Physiol, 2017, 58(11):1991-2005.
[29] Pan Y, Wang ZH, Yang L, Wang ZF, Shi L, et al. Diffe-rences in cell wall components and allocation of boron to cell walls confer variations in sensitivities of Brassica napus cultivars to boron deficiency[J]. Plant Soil, 2012, 354(1-2):383-394.
[30] Poole RL. The TAIR database[J]. Methods Mol Biol, 2007, 406:179-212.
[31] Cheng F, Liu SY, Wu J, Fang L, Sun S, et al. BRAD, the genetics and genomics database for Brassica plants[J]. BMC Plant Biol, 2011, 11(1):1-6.
[32] Castro ED, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, et al. ScanProsite:detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins[J]. Nucleic Acids Res, 2006, 34(s2):362-365.
[33] Østergaard L, King GJ. Standardized gene nomenclature for the Brassica genus[J]. Plant Methods, 2008, 4(1):10.
[34] Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol, 1999, 112:531-552.
[35] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10):2731-2739.
[36] Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. MEME Suite:tools for motif discovery and searching[J]. Nucleic Acids Res, 2009, 37(s2):202-208.
[37] Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.
[38] Sampedro J, Lee Y, Carey RE, Depamphilis C, Cosgrove DJ. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family[J]. Plant J, 2005, 44(3):409-419.
[39] Santiago TR, Pereira VM, de Souza WR, Steindorff AS, Cunha BADB, et al. Genome-wide identification, characterization and expression profile analysis of expansins gene family in sugarcane (Saccharumspp.)[J]. PLoS One, 2018, 13(1):e0191081.
[40] Wei H, Yang JY, Hou ZQ, Li F, Jia B, Liu P. Characte-rization and expression analysis of PbEXP genes in the epidermis of pear (Pyrus bretschneideriRehd.)[J]. Plant Growth Regul, 2018, 84(1):1-9.
[41] Guimaraes LA, Mota APZ, Araujo ACG, Pereira BM, Saraiva MADP, Silva RB. Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene[J]. Plant Mol Biol, 2017, 94(1-2):79-96.
[42] Ding AM, Marowa P, Kong YZ. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum)[J]. Mol Genet Genomics, 2016, 291(5):1891-1907.
[43] Li NN, Pu YY, Gong YC, Yu YL, Ding HF. Genomic location and expression analysis of expansin gene family reveals the evolutionary and functional significance in Triticum aestivum[J]. Genes Genom, 2016, 38(11):1021-1030.
[44] Lu YE, Liu LF, Wang X, Han ZH, Ouyang B, Zhang JH, Li HX. Genome-wide identification and expression analysis of the expansin gene family in tomato[J]. Mol Genet Genomics, 2016, 291(2):597-608.
[45] Krishnamurthy P, Hong JK, Kim JA, Jeong MJ, Lee YH, Lee SI. Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication[J]. Mol Genet Genomics, 2015, 290(2):521-530.
[46] Liu Y, Zhang J, Li W, Guo CH, Shu YJ. In silico identification, phylogeny and expression analysis of expansin superfamily in Medicago truncatula[J]. Biotechnol Biotec Eq, 2015, 30(1):1-7.
[47] Zhang SZ, Xu RR, Gao Z, Chen CT, Jiang ZS, Shu HR. A genome-wide analysis of the expansin genes in Malus×Domestica[J]. Mol Genet Genomics, 2014, 289(2):225-236.
[48] Zhu Y, Wu NN, Song WL, Yin GJ, Qin YJ, et al. Soybean (Glycine max) expansin gene superfamily origins:segmental and tandem duplication events followed by divergent selection among subfamilies[J]. BMC Plant Biol, 2014, 14(1):93.
[49] Santo SD, Vannozzi A, Tornielli GB, Fasoli M, Venturini L, et al. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics[J]. PLoS One, 2013, 8(4):e62206.
[50] McQueen-Mason S, Durachko DM, Cosgrove DJ. Two endogenous proteins that induce cell wall extension in plants[J]. Plant Cell, 1992, 4(4):1425-1433.
[51] Seader VH, Thornsberry JM, Carey RE. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins[J]. J Plant Res, 2016, 129(2):199-207.
[52] Cosgrove DJ. New genes and new biological roles for expansins[J]. Curr Opin Plant Biol, 2000, 3(1):73-78.
[53] Broadley M, Brown P, Cakmak I, Rengel Z, Zhao FJ. Function of nutrients:micronutrients[M]//Marschner P, ed. Mineral Nutrition of Higher Plants, 3rd ed., 2012:191-248.
[54] Cosgrove DJ. Plant expansins:diversity and interactions with plant cell walls[J]. Curr Opin Plant Biol, 2015, 25:162-172.
[55] Zhang DD, Hua YP, Wang XH, Zhao H, Shi L, Xu FS. A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.)[J]. PLoS One, 2014, 9:e112089. |